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This study introduces an advanced adaptive Case-Based 

Reasoning (CBR) framework designed for real-time 

diagnosis and prognosis of the technical condition of ship 

power plants, achieved through the seamless integration 

of Bayesian networks, Markov process modeling, and 

cognitive simulation within a dynamically adaptive 

environment. Traditional CBR approaches, while 

effective at retrieving analogues from historical case 

archives, often lack the capability to capture complex 

stochastic dependencies among system components, 

dynamic degradation patterns under varying operational 

loads, and real-time contextual variations in sensor data. 

To address these limitations, the proposed methodology 

incorporates six integrated phases: data acquisition and 

normalization, ensuring consistent standardization of 

heterogeneous sensor readings and operational 

parameters; probabilistic failure analysis utilizing 

Bayesian networks to compute conditional failure 

probabilities and adjust case relevance weights in light 

of intercomponent dependencies; scenario-driven 

forecasting based on discrete-time Markov process 

models to simulate state transition dynamics and predict 

degradation trajectories; decision adaptation and fusion, 

which combines classical CBR retrieval outcomes, 

probabilistic inference results, and forecasted 

degradation estimates via dynamically normalized 

weighted coefficients (α, β, γ) that reflect current risk 

levels; knowledge base maintenance through the 

incorporation of newly acquired real cases and 

synthetically generated cases from cognitive simulation, 

thus enhancing retrieval accuracy and mitigating data 

scarcity; and automated generation of preventive 

maintenance recommendations aligned with predicted 

remaining useful life. Validation experiments conducted 

on a comprehensive dataset of more than 11 000 

historical and synthetic cases demonstrated a diagnostic 

accuracy of 91 % compared to 79 % achieved by 

traditional CBR, a 6.7 % reduction in false alarms, a 5–

7 % improvement in remaining useful life prediction 

accuracy, and a 4.7 % decrease in forecast error 

attributable to the cognitive simulation module, which 

also improved rare-failure detection rates by 5.1 %. 

These empirical results confirm the proposed system's 

high reliability and robustness under fluctuating 

operational loads and cascading failure scenarios, as 

well as its seamless integration into onboard monitoring 

architectures for optimized maintenance scheduling, 

reduced unplanned downtime, and enhanced operational 

safety of maritime power plants. 

Keywords: probabilistic analysis, Bayesian networks, 

Markov processes, cognitive models, dynamic 

adaptation, technical diagnostics, expert systems 
 

 
Introduction. Modern technical condition 

monitoring systems for complex systems, 
particularly SPPs, face a number of challenges due 
to increasing equipment complexity, the rapid 
growth of operational data volumes, and the need 
for failure prognosis over time [1]. Traditional CBR 
methods, which focus primarily on retrieving 
similar historical cases, are limited in their ability to 
account for the stochastic nature of failure 
development and the dynamic evolution of the TC 
of CTSs. This limitation results in reduced 
diagnostic accuracy under uncertainty and variable 
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operational loads. Under variable loads and 
complex cascading interactions between 
subsystems, this leads to lower diagnostic and 
prognostic reliability and increases the risk of 
incorrect decisions. 

To enhance diagnostic performance, a 
methodology for adapting CBR-based decisions has 
been developed that integrates three key 
components. Bayesian networks model 
probabilistic dependencies between component 
failures and account for cascading effects in fault 
development. Markov processes forecast changes in 
equipment condition over time by describing 
probabilistic transitions between operational and 
failed states. Simulation modeling dynamically 
updates weighting coefficients in the CBR model 
based on real operational data and synthesizes new 
cases for underrepresented failure scenarios. The 
joint use of these approaches enables more accurate 
estimation of failure probabilities for critical SPP 
components under current operating conditions, 
correction of CBR-based decisions based on 
predicted changes in technical condition, automatic 
adaptation of the case base and real-time 
reallocation of parameter importance, and 
generation of substantiated preventive maintenance 
recommendations to extend equipment life. 

The need to develop adaptive CBR 
mechanisms is confirmed by a review of recent 
studies in the field. For instance, Nikpour and 
Aamodt [2] proposed the integration of Bayesian 
networks into CBR for diagnosing failures under 
uncertainty, improving decision accuracy. 
However, their approach relies on static network 
structures and lacks dynamic adaptation to changing 
operational parameters. Similar limitations are 
noted in the work of [3], who applied the Shapley 
Attitude Integral to account for attribute interactions 
and expert preferences in case retrieval, 
significantly improving search quality. However, 
their method does not address the adaptation of 
decisions based on probabilistic prognosis of 
system state. Schultheis [4] presents a hybrid TCBR 
approach combining CBR with transformers to 
adapt time series in predictive maintenance tasks, 
offering enhanced explainability. Nevertheless, the 
proposed model depends on the presence of similar 
time series in the database and lacks quantitative 
uncertainty estimation of forecasts. In their review 
of explainable CBR, Schoenborn et al. [5] outlined 
key goals for decision explanation but noted 
insufficient integration of explainability with 
probabilistic methods for equipment longevity 
prediction. Kumar et al. [6] considered inter-case 
dependencies in process-oriented CBR, improving 
retrieval accuracy, but did not address the temporal 

evolution of cases or failure forecasting. Expanding 
similarity measures, Malburg et al. [7] proposed 
attribute weight correction when sensor data is 
missing, enhancing retrieval robustness, but their 
method does not implement dynamic adaptation of 
decisions. Additionally, Gould et al. [8] proposed an 
AA-CBR-P argumentation mechanism 
incorporating user preferences in case comparison. 
However, this method does not account for dynamic 
changes in equipment condition or probabilistic 
failure forecasting. In their review on Real-Time 
Fault Diagnosis methods, Yan et al. [9] emphasized 
the importance of applying CBR for online 
diagnostics in industrial systems, while also 
highlighting the insufficient development of case 
adaptation mechanisms based on failure prognosis. 
Thus, existing research addresses isolated aspects of 
improving CBR quality, but in most cases does not 
provide a comprehensive solution for dynamic 
decision adaptation based on probabilistic 
forecasting of equipment technical condition. This 
underscores the relevance of the present study. 

The aim of this paper is to develop and 
experimentally validate an adaptive CBR 
mechanism for diagnosing ship power plants. The 
proposed approach integrates probabilistic failure 
analysis using Bayesian networks, time-based 
forecasting of component technical condition via 
Markov processes, and dynamic updating of 
parameter weighting through simulation modeling. 
The implementation of the proposed approach will 
improve diagnostic accuracy, take into account the 
dynamic evolution of equipment condition, and 
provide effective preventive maintenance 
recommendations for extending the service life of 
ship power plants. 

Results. Traditional CBR systems are based on 
retrieving similar failures from a case base and 
applying solutions derived from past operational 
experience [1, 10]. However, this approach has a 
number of significant limitations: neglect of 
component condition dynamics (classical systems 
do not account for the gradual degradation of 
equipment under operational stress); lack of 
consideration for external operational factors 
affecting the probability of failure progression; 
insufficient modeling of cascading failure effects, 
where interrelated component failures lead to 
systemic disruptions that are not reflected in 
diagnostic decision-making. 

Integrating CBR with probabilistic methods 
and simulation modeling helps to overcome these 
limitations through: refinement of component 
condition assessments based on modeling 
probabilistic dependencies between them (using 
Bayesian networks); forecasting of failure 
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progression over time using Markov process 
models; and dynamic updating of the case base 
through simulation of new scenarios and 
incorporation of actual operational data. 

Some key interdependencies between failures 
of SPP components and their impact on system 
functionality are presented in Table 1. 

Table 1 

Interdependencies of SPP Component Failures 

 and Their Impact on the System 

Equipment 
Dependent 

Elements 

System 

Impact 

Generator 
Electrical 

network 

Power 

reduction 

Pump Cooling system Overheating 

Engine 
Power 

transmission 
Loss of thrust 

 
From the table, it follows that the failure of 

individual equipment may initiate cascading 

processes that critically affect the overall operability 

of the SPP. For example, a generator power drop 

disrupts power supply to consumers, while pump 

failure leads to overheating of key systems.To 

formalize the adaptive CBR decision correction 

mechanism based on probabilistic analysis, we 

introduce the basic dependencies. 

Let: pi – the predicted probability of failure for 

equipment i based on a Bayesian network; si – the 

initial similarity measure of the current case with the 

i-th precedent; wi – the adaptive weight of the 

precedent. 

The adaptive weight of the precedent is defined 

by the formula: 

 

                                   𝜔𝑖 = 𝑠𝑖 ∙ (1 − 𝑝𝑖),                (1) 

 

where the correction factor (1−pi) reduces the 

precedent's weight with an increased failure risk, 

thereby improving diagnostic robustness under 

degrading conditions. 

The forecast of equipment technical condition 

over time is carried out using an exponential 

degradation model of operability probability: 

 

            𝑃𝑤𝑜𝑟𝑘𝑖𝑛𝑔(𝑡) = 𝑃𝑤𝑜𝑟𝑘𝑖𝑛𝑔(0) ∙ 𝑒−𝜆𝑡,   (2) 

 

where: λ – the failure rate of the component (a 

parameter dependent on operational conditions and 

equipment characteristics). 

The final diagnostic decision Dfinal is formed 

based on the aggregation of classical CBR decision, 

probabilistic analysis, and condition forecasting: 

 

 𝐷𝑓𝑖𝑛𝑎𝑙 = 𝛼 ∙ 𝐷𝐶𝐵𝑅 + 𝛽 ∙ 𝐷𝐵𝑎𝑦𝑒𝑠 + 𝛾 ∙ 𝐷𝑆𝑖𝑚,    

     (3) 

where α,β,γ≥0 are normalized weight coefficients 

satisfying the condition α+β+γ=1. 

Thus, CBR decision adaptation includes 

adjustment of initial conclusions based on 

probabilistic equipment states, prediction of 

technical condition changes, and case base updates 

considering new operational data from complex 

technical systems. This approach significantly 

increases the accuracy of diagnostics and reliability 

of SPP functioning under dynamic operating 

conditions. 

The adaptive CBR mechanism for SPP 

diagnostics is implemented as an algorithm 

consisting of six main stages: data collection and 

preprocessing, failure probability correction, 

simulation modeling, final diagnosis formation, 

case base update, and maintenance recommendation 

generation. 

Input data: 

array of operational parameters of the SPP: 

𝑋 = {𝑥1, 𝑥2, … , 𝑥𝑚}; 

CBR case base: {(𝐶𝑗, 𝑠𝑗)}
𝑗=1

𝑁
, where 𝑠𝑗 is the 

similarity measure of the case. 

Output data: final diagnosis 𝐷𝑓𝑖𝑛𝑎𝑙; updated 

case base considering new cases and recalculated 

weights. 

CBR decision adaptation includes the 

following stages: 

 

Stage 1. Data collection and preprocessing. 

At this stage, the parameters of the SPP 

equipment condition are collected and prepared for 

further processing: reading of input parameters X; 

feature normalization (min–max or Z-score) to 

ensure comparability of values and increase 

computational stability; 

 

Stage 2. Failure probability correction. 

This stage accounts for operational factors and 

probabilistic dependencies between failures: 

for each component, the posterior probability 

of failure is calculated using a Bayesian network: 

 

 𝑝𝑖 = 𝑃(𝑓𝑎𝑖𝑙𝑢𝑟𝑒𝑖|𝑋); 
 

the weights of the cases are corrected based on 

probabilistic analysis (1), which improves the 

relevance of similar case retrieval; 

 

Stage 3. Simulation modeling. 

To forecast the development of the technical 

system, simulation modeling is applied: generation 
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of K SPP operation scenarios; for each scenario, 

simulation of component state evolution over time 

using the Markov model (2); evaluation of dynamic 

inference 𝐷𝑆𝑖𝑚based on failure probabilities across 

all scenarios; 

 

Stage 4. Formation of the final diagnosis. 

The final diagnostic decision is formed based 

on the integration of various sources of information: 

calculation of the base diagnosis 𝐷𝐶𝐵𝑅 using the 

adjusted case weights wᵢ; aggregation of CBR, 

Bayesian analysis, and simulation modeling 

inferences (3). The optimal solution is selected as 

the adjusted diagnostic decision; 

 

Stage 5. Case base update. 

The system updates the knowledge base based 

on new data and diagnostic results: addition of new 

cases arising during operation; recalculation of 

diagnostic accuracy metrics (Accuracy, Precision, 

Recall, F1-score) to evaluate adaptation 

effectiveness; if necessary, adjustment of global 

weighting coefficients α, β, γ controlling the 

contribution of each method; 

 

Stage 6. Maintenance recommendation 

generation. Based on the formed diagnosis and the 

predicted equipment state, maintenance 

recommendations are developed to extend the SPP's 

service life and prevent the development of critical 

failures. 

Figure 1 illustrates the process of adapting 

CBR decisions considering failure probabilistic 

analysis. 

 

 

Fig. 1. Adaptation of CBR Decisions Considering 

Probabilistic Analysis of SPP Equipment Failures 

The diagram illustrates the general concept of 

adaptation: input data → forecasting → decision 

correction → recommendations. A step-by-step 

flowchart of the adaptive CBR mechanism 

implementation is shown in Figure 2. It details the 

stages of equipment condition diagnostics and 

forecasting based on the integration of CBR 

methods, Bayesian analysis, and simulation 

modeling. 

 

 

Fig. 2. Flowchart of the Adaptive CBR  

Algorithm for SPP Diagnostics 

The flowchart illustrates the sequential 

execution of the main stages of CBR decision 

adaptation from the collection and preprocessing of 

operational data to the formation of the final 

diagnosis. A key feature of the algorithm is the 

branching after the aggregated inference: based on 

the diagnosis, maintenance recommendations are 

simultaneously generated, and the case base is 

updated to improve the accuracy of future 

diagnostic decisions. 

Key features of the adaptive mechanism 

include: аssessment of case relevance: standard 

retrieval of similar cases is complemented by 

probabilistic analysis of component states, allowing 

the selection of safer scenarios in cases of forecasted 

failure risk; сorrection of diagnostic decisions: 

when new data is received, the system automatically 

refines the diagnosis, suggesting preventive or 

repair actions if risk thresholds are exceeded; 

аutomatic learning on new data: the case base is 

dynamically updated, and model weights are 

adjusted based on analysis of operational 

information and forecasting results. 

Standard CBR methods operate on fixed 

historical data, ignoring probabilistic factors in 

failure development. The integration of Bayesian 

networks and Markov models transforms CBR into 

a dynamically adaptive system capable of 

accounting for both the current and predicted 

equipment states, thereby increasing diagnostic 
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accuracy and extending the life cycle of critical 

technical systems. 

The adaptive SPP diagnostic mechanism is 

based on the integration of three methods. CBR, 

probabilistic failure analysis (Bayesian networks), 

and simulation modeling based on Markov 

processes. The formalization of this integration 

enables the final diagnostic output to take into 

account both historical data and the forecast of 

equipment condition changes. 

The final diagnosis 𝐷𝑓𝑖𝑛𝑎𝑙 is defined as a 

function of three components: 

 

𝐷𝑓𝑖𝑛𝑎𝑙 = 𝑓(𝐷𝐶𝐵𝑅 , 𝐷𝐵𝑎𝑦𝑒𝑠, 𝐷𝑆𝑖𝑚), 

 

where f(⋅) is the function defining the integration 

mechanism of the decisions; 

  𝐷𝐶𝐵𝑅: diagnosis based on precedents, 

determined by the similarity function between the 

current case and historical ones; includes the 

diagnosis and its associated error from the CBR 

method; 

  𝐷𝐵𝑎𝑦𝑒𝑠: probabilistic diagnosis based on 

Bayesian networks, taking into account the 

interdependence of component failures; includes 

correction based on failure probability models and 

associated error; 

  𝐷𝑆𝑖𝑚: diagnosis based on simulation 

modeling, forecasting the system’s behavior over 

time; includes adjustments from the cognitive 

simulation model and its related error; 

  𝐷𝑓𝑖𝑛𝑎𝑙: the final diagnostic output combining 

all three methods. 

A weighted aggregation scheme is used to 

combine the diagnostic outputs: 

 

𝐷𝑓𝑖𝑛𝑎𝑙 = 𝛼𝑑 ∙ 𝐷𝐶𝐵𝑅 + 𝛽𝑑 ∙ 𝐷𝐵𝑎𝑦𝑒𝑠 + 𝛾𝑑 ∙ 𝐷𝑆𝑖𝑚 

 

where 𝛼𝑑 , 𝛽𝑑 , 𝛾𝑑 are weighting coefficients 

reflecting the contribution of each method. These 

coefficients satisfy the normalization condition: 

𝛼𝑑+𝛽𝑑 + 𝛾𝑑 = 1 

The weight βd increases if the failure 

probability from the Bayesian network exceeds a 

threshold value. The weight γd increases if the 

simulation models reveal a high risk of failure, even 

if CBR finds no similar cases. 

The weighting coefficients can be adjusted 

using gradient descent or Bayesian optimization, 

minimizing the diagnostic error: 

 

𝜔∗ = 𝑎𝑟𝑔 𝑚𝑖𝑛 𝛼,𝛽,𝛾 ∑(𝐷𝑡𝑟𝑢𝑒,𝑖 − 𝐷𝑓𝑖𝑛𝑎𝑙,𝑖)2

𝑁

𝑖=1

 

Similarly – Definition of weight coefficients. 

The weight coefficients 𝛼𝑑 , 𝛽𝑑 , 𝛾𝑑can be 

determined by various methods depending on the 

available data and the problem formulation. 

1. Determining weight coefficients based on 

dagnostic error 

If the average diagnostic errors  𝐸𝐶𝐵𝑅 , 
𝐸𝐵𝑎𝑦𝑒𝑠, 𝐸𝑆𝑖𝑚 are known, the weights can be set as 

follows: 

 

𝛼𝑑 =
1

𝐸𝐶𝐵𝑅
⁄

1
𝐸𝐶𝐵𝑅

⁄ +1
𝐸𝐵𝑎𝑦𝑒𝑠

⁄ +1
𝐸𝑆𝑖𝑚

⁄
; 

 

𝛽𝑑 =
1

𝐸𝐵𝑎𝑦𝑒𝑠
⁄

1
𝐸𝐶𝐵𝑅

⁄ +1
𝐸𝐵𝑎𝑦𝑒𝑠

⁄ +1
𝐸𝑆𝑖𝑚

⁄
; 

 

𝛾𝑑 =

1
𝐸𝑆𝑖𝑚

⁄

1
𝐸𝐶𝐵𝑅

⁄ + 1
𝐸𝐵𝑎𝑦𝑒𝑠

⁄ + 1
𝐸𝑆𝑖𝑚

⁄
 

 

2. Determining weight coefficients based on 

confidence coefficients 

If for each diagnostic method the confidence 

level С𝐶𝐵𝑅 , С𝐵𝑎𝑦𝑒𝑠, С𝑆𝑖𝑚 is known, the weights can 

be calculated as follows: 

 

𝛼𝑑 =
С𝐶𝐵𝑅

С𝐶𝐵𝑅+С𝐵𝑎𝑦𝑒𝑠+С𝑆𝑖𝑚
; 

 

𝛽𝑑 =
С𝐵𝑎𝑦𝑒𝑠

С𝐶𝐵𝑅 + С𝐵𝑎𝑦𝑒𝑠 + С𝑆𝑖𝑚
 

 

𝛾𝑑 =
С𝑆𝑖𝑚

С𝐶𝐵𝑅 + С𝐵𝑎𝑦𝑒𝑠 + С𝑆𝑖𝑚
 

 

The higher the accuracy of the diagnostic 

method, the greater its contribution to the final 

estimate. The confidence coefficients 

С𝐶𝐵𝑅 , С𝐵𝑎𝑦𝑒𝑠, С𝑆𝑖𝑚can be determined based on 

previous diagnostic data, for example, as the 

proportion of correctly identified failures by this 

method. 

3. Determining weight coefficients based on 

diagnostic accuracy 

If the accuracies of diagnostic methods are 

known (e.g., the proportion of correctly detected 

failures), they can be normalized as: 

 

𝛼𝑑 =
𝑃𝐶𝐵𝑅

𝑃𝐶𝐵𝑅+𝑃𝐵𝑎𝑦𝑒𝑠+𝑃𝑆𝑖𝑚
; 

 

𝛽𝑑 =
𝑃𝐵𝑎𝑦𝑒𝑠

𝑃𝐶𝐵𝑅 + 𝑃𝐵𝑎𝑦𝑒𝑠 + 𝑃𝑆𝑖𝑚
; 
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𝛾𝑑 =
𝑃𝑆𝑖𝑚

𝑃𝐶𝐵𝑅 + 𝑃𝐵𝑎𝑦𝑒𝑠 + 𝑃𝑆𝑖𝑚
 

 

Dynamic weight update. 

If the diagnostic system operates in real-time, 

weights can be updated dynamically based on the 

probability of successful diagnosis: 

 

𝛼𝑑(𝑡 + 1) = 𝛼𝑑(𝑡) + 𝑘(𝑃𝐶𝐵𝑅 − 𝑃𝑓𝑖𝑛𝑎𝑙); 

𝛽𝑑(𝑡 + 1) = 𝛽𝑑(𝑡) + 𝑘(𝑃𝐵𝑎𝑦𝑒𝑠 − 𝑃𝑓𝑖𝑛𝑎𝑙); 

𝛾𝑑(𝑡 + 1) = 𝛾𝑑(𝑡) + 𝑘(𝑃𝑆𝑖𝑚 − 𝑃𝑓𝑖𝑛𝑎𝑙), 

 

where 𝑃𝐶𝐵𝑅 , 𝑃𝐵𝑎𝑦𝑒𝑠, 𝑃𝑆𝑖𝑚 – predicted probabilities 

of correct diagnosis; 

 k – adaptation rate coefficient. 

 If there is no data on method quality, weights 

can be set uniformly: 

 

𝛼𝑑+𝛽𝑑 + 𝛾𝑑 =
1

3
 

 

Proportional distribution based on method 

accuracy. 

If the relative accuracies of CBR (𝑃𝐶𝐵𝑅), 

probabilistic models (𝑃𝐵𝑎𝑦𝑒𝑠), and simulation 

modeling (𝑃𝑆𝑖𝑚) are known, then 𝛼𝑑 , 𝛽𝑑    and 𝛾𝑑  are 

normalized as follows: 

 

𝛼𝑑 =
𝑃𝐶𝐵𝑅

𝑃𝐶𝐵𝑅 + 𝑃𝑆𝑖𝑚
∙ (1 − 𝛾𝑑): 

 

𝛽𝑑 =
𝑃𝐵𝑎𝑦𝑒𝑠

𝑃𝐵𝑎𝑦𝑒𝑠 + 𝑃𝑆𝑖𝑚
∙ (1 − 𝛼𝑑); 

 

𝛾𝑑 =
𝑃𝑆𝑖𝑚

𝑃𝐵𝑎𝑦𝑒𝑠 + 𝑃𝑆𝑖𝑚
∙ (1 − 𝛼𝑑) 

 

Definition of 𝜶𝒅, 𝜷𝒅 and 𝜸𝒅 through inverse 

errors (the smaller the error, the higher the 

contribution). 

If the average model errors 𝐸𝐶𝐵𝑅, 𝐸𝐵𝑎𝑦𝑒𝑠  and 

𝐸𝑆𝑖𝑚 are known, the distribution is set as: 

 

𝛼𝑑 =

1
𝐸𝐶𝐵𝑅

⁄

1
𝐸𝐶𝐵𝑅

⁄ + 1
𝐸𝑆𝑖𝑚

⁄
∙ (1 − 𝛾𝑑); 

 

𝛽𝑑 =

1
𝐸𝐵𝑎𝑦𝑒𝑠

⁄

1
𝐸𝐵𝑎𝑦𝑒𝑠

⁄ + 1
𝐸𝑆𝑖𝑚

⁄
∙ (1 − 𝛼𝑑); 

 

𝛾𝑑 =

1
𝐸𝑆𝑖𝑚

⁄

1
𝐸𝐵𝑎𝑦𝑒𝑠

⁄ + 1
𝐸𝑆𝑖𝑚

⁄
∙ (1 − 𝛼𝑑) 

 

If no additional information is available, 

weight coefficients 𝛽𝑑 and  𝛾𝑑 are divided equally: 

 

𝛽𝑑 = 𝛾𝑑 =
1 − 𝛼𝑑

2
 

 

If the accuracy of diagnostic methods is 

known, accuracy normalization is used. If errors are 

known, inverse error normalization is used. If there 

is no data, uniform distribution is applied. If a 

method shows higher accuracy on current data, its 

weight increases. If confidence coefficients are 

available, they can be normalized for weight 

calculation. If the model operates dynamically, 

weights can be adjusted based on success 

probabilities. The method of choosing weights 

depends on the available data and system type. In 

the case of marine power plants, the most accurate 

method would be one based on historical diagnostic 

errors and adaptive weight updating as new data 

becomes available. 

The optimal method for selecting weights 

depends on the available data: if error data is 

available – use method 1; if accuracy data – method 

2; for dynamic updating – method 3. 

Thus, the share of each coefficient is determined 

either based on errors, or on diagnostic accuracy, or 

is dynamically adjusted over time. 

Diagnosis based on CBR. 

The CBR method assesses the similarity of a 

new failure X with known cases Ci in the database. 

The diagnosis based on case retrieval: 

 

𝐷𝐶𝐵𝑅(𝑋) = ∑ 𝜔𝑖 ∙ 𝑆(𝑋, 𝐶𝑖

𝑁

𝑖=1

) ∙ 𝐷𝑖 

 

where 𝑆(𝑋, 𝐶𝑖)  – similarity measure between the 

current case X and precedent Ci; 

  𝐷𝑖   – diagnostic result for the i-th precedent; 

   𝜔𝑖 – reliability weight of the precedent. 

Bayesian diagnosis. 

Diagnostic inference based on probabilistic 

dependencies: 

 

𝐷𝐵𝑎𝑦𝑒𝑠 = ∑ 𝑃(𝐶𝑘|

𝐾

𝑘=1

𝐸) ∙ 𝐷𝑘 
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The probability of component Ck failure, 

considering dependencies in the system, is set by 

Bayes' formula: 

 

𝑃(𝐶𝑘|𝐸) =
𝑃(𝐸|𝐶𝑘) ∙ 𝑃(𝐶𝑘)

∑ 𝑃(𝐸|𝐶𝑗)𝑗 ∙ 𝑃(𝐶𝑗)
    

 

where 𝑃(𝐶𝑘)– prior probability of Ck failure; 

           𝑃(𝐸|𝐶𝑘)– likelihood of observed data given 

failure of Ck. 

Simulation modeling 

Simulation modeling predicts the probability 

of failure over time. 

The probability of component Ck being in a 

certain state at time t is determined by the Markov 

model: 

𝑃(𝐶𝑘, 𝑡 + 1) = 𝑃(𝐶𝑘 , 𝑡) ∙ 𝑃𝑡𝑟𝑎𝑛𝑠 

 

where 𝑃𝑡𝑟𝑎𝑛𝑠– transition probability matrix 

Predicted failure probability after t hours: 

 

𝐷𝑆𝑖𝑚(𝑡) = 1 − 𝑃(𝐶𝑘, 𝑡), 
 

where 𝑃(𝐶𝑘, 𝑡) – probability calculated via the 

Markov process transition matrix. 

The developed mathematical model formalizes 

the integration of CBR, Bayesian analysis, and 

simulation modeling. The final diagnostic output 

Dfinal accounts for both historical data and 

probabilistic forecasts. Optimization of the 

parameters 𝛼𝑑 , 𝛽𝑑  and 𝛾𝑑 allows the model to adapt 

to specific operational conditions. 

Integration of Bayesian networks and 

Markov processes. 

Integration occurs through correction of 

component state probabilities: 

 

                                𝑃(𝑆𝑡|𝑆𝑡−1, 𝐷𝐶𝐵𝑅 , 𝐷𝑆𝑖𝑚) =

= ∑ 𝑃(𝑆𝑡

𝑖

|𝑆𝑡−1, 𝑈𝑖)

∙ 𝑃(𝑈𝑖|𝐷𝐶𝐵𝑅 , 𝐷𝑆𝑖𝑚), 
 

where 𝑃(𝑆𝑡|𝑆𝑡−1) – probability of transition of the 

SPP to state St per the Markov model; 

 𝑃(𝑈𝑖|𝐷𝐶𝐵𝑅 , 𝐷𝑆𝑖𝑚) – corrective failure 

probability from the Bayesian network. 

The final diagnosis is obtained by summing 

over all possible states. 

Correction of CBR diagnosis based on 

probabilistic forecasts. 

Correction of the CBR decision is performed 

considering predicted probabilities: 

 

𝐷𝑎𝑑𝑗(𝑡) = 𝐷𝐶𝐵𝑅 + 𝛼𝑑 ∙ 𝑃𝐵𝑎𝑦𝑒𝑠(𝑡) + 𝛽𝑑 ∙ 𝑃𝑆𝑖𝑚(𝑡) 

When the threshold probability of failure is 

exceeded, automatic diagnosis refinement is 

performed. 

Formula for updating failure probabilities 

using Bayesian analysis: 

 

𝑃(𝑈𝑖|𝑈𝑗) = 𝛼𝑖𝑗 ∙ 𝑃(𝑈𝑗), 

 

where 𝛼𝑖𝑗– influence coefficient of failure of 

component j on component i. 

Formula for adjusting CBR decisions 

based on forecast probabilities: 

 

𝑃𝑎𝑑𝑗(𝐷) = 𝑃(𝐷) + ∑ 𝛾𝑖 ∙ 𝑃𝐵𝑎𝑦𝑒𝑠

𝑖

(𝐷𝑖), 

where 𝛾𝑖– influence coefficients of probabilistic 

analysis on the final diagnosis. 

Table 2 demonstrates the optimal weight 

coefficients depending on the diagnostic scenario. 

The data were obtained from a statistical analysis of 

multiple marine power plant operational scenarios, 

where average influence values of each diagnostic 

method were calculated. 
 

Table 2  

Optimal Weight Coefficients Depending  

on the Diagnostic Scenario 

Operating 

Scenario 
αd (CBR) ηd (Bayes) γd (Sim) 

Stable 

operation 

without 

failures 

0.7 0.2 0.1 

Increased risk 

due to aging 
0.4 0.4 0.2 

High loads and 

overheating 
0.3 0.5 0.2 

Lack of 

historical data 
0.2 0.3 0.5 

Emergency 

situation 
0.2 0.6 0.2 

 
Analysis of the data in Table 2 shows that: in 

normal operating mode, CBR contributes the most, 

as historical data effectively support failure 

similarity identification; under high failure risk, 

Bayesian networks become more influential due to 

the critical importance of considering dependencies 

between components; in the absence of sufficient 

data, simulation modeling dominates, as it can 

generate artificial scenarios for failure prediction. 

The integration algorithm was implemented in the 

Python environment using the scikit-learn library 

for CBR and Bayesian networks, and numpy for 

simulation modeling.  



12         ВІСНИК СХІДНОУКРАЇНСЬКОГО НАЦІОНАЛЬНОГО УНІВЕРСИТЕТУ імені Володимира Даля № 4 (290) 2025 

 

 

An example of the code for calculating the final 

diagnosis: 

import numpy as np 

def update_cbr_decision(prob_failure, 

correction_ factor): 

    return prob_failure * correction_factor 

# Example data 

components = {"Generator": 0.10, "Cooling": 

0.15, "Pump": 0.05} 

correction_factors = {"Generator": 0.8, 

"Cooling": 1.2, "Pump": 1.1} 

# Correction of probabilities 

corrected_probs = {comp: 

update_cbr_decision (components[comp], 

correction_factors[comp]) for comp in 

components} 

Dynamic weight adaptation is performed based 

on the criteria of minimizing diagnostic error on the 

validation dataset. 

The use of the load factor as an independent 

variable makes it possible to conduct generalized 

forecasts for various types of SРР, which increases 

the universality of the analysis of the obtained 

results. The load factor is a dimensionless quantity 

showing the ratio of the current load to the nominal, 

which allows generalizing the results for different 

operating conditions of the SРР. Figure 3 presents 

graphs of changes in the failure probabilities of five 

key SРР subsystems depending on the load 

represented through the load factor. 

 

 

Fig. 3. Changes in failure probabilities of SРР 

components depending on the load factor 

For the main engine, Figure 3 shows that the 

change in failure probabilities corresponds to an 

exponential increase in failure probability as the 

load factor increases. At reduced loads (factor 0.6–

0.8), the failure probability remains at 1–1.5%, but 

when exceeding the nominal level (factor >1.0), the 

growth accelerates, reaching over 5% at 1.4. This 

indicates nonlinear effects associated with 

overheating, wear, and cavitation. The cooling 

system operates stably at a factor of 0.6–1.0, but 

after 1.1, the failure probability increases more 

rapidly, indicating overload of heat exchangers and 

deterioration of heat dissipation. The power supply 

system shows stability up to a factor of 1.2, after 

which the failure probability begins to increase. 

This is consistent with cable heating models and 

changes in generator performance. The compressed 

air system shows minimal failure probabilities even 

at a load factor of 1.2, but after exceeding 1.3, the 

increase becomes noticeable, which is explained by 

compressor wear. The fuel system demonstrates a 

relatively linear increase in failure probability 

starting at a factor of 0.6. However, after exceeding 

1.3, the probability increases more sharply, 

indicating risks of filter clogging and pump 

overload. A load factor exceeding 1.0 becomes a 

critical zone where the failure probability grows 

faster. The main engine and cooling system are most 

sensitive to increasing load factor, requiring 

enhanced monitoring during overloaded operation. 

The power supply and fuel systems show moderate 

dependence on the load factor but become 

vulnerable at values above 1.3. The compressed air 

system is the most resilient but is also subject to 

failures under overload. 

Figure 4 presents the generalized SРР failure 

probability, showing the integral failure probability 

of the SРР calculated based on the failure 

probabilities of key components and subsystems. 

 

 

Fig. 4. Generalized Failure Probability of the SРР 

The data is obtained based on the analysis of 

probabilistic dependencies of subsystem failures 

(Markov method, Bayesian networks). From Figure 

4, a decrease in residual life is observed, 

accompanied by an increase in the risk of failures of 

components and SРР subsystems. From this follows 

how the maintenance strategy changes depending 

on: high residual life (80–100%) – operation is 

recommended; medium residual life (40–60%) – 
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maintenance or diagnostics; low residual life 

(<20%) – repair or replacement. Threshold values 

of residual life (80%, 40%, 20%) are selected based 

on industry recommendations for SРР maintenance. 

Figure 5 illustrates the change in the failure 

probability of the SРР over time. 
 

 
 

Fig. 5. Change in the Failure Probability  

of the SPP Over Time 

From the graph (Fig. 5), it follows that the 

probability of failure gradually increases, reflecting 

equipment degradation processes, the influence of 

operational factors, and the accumulation of failures 

in subsystems. The failure probability forecast is 

carried out over a 1000-hour operation interval, 

which allows assessing the short-term dynamics of 

equipment degradation. 

Figure 6 presents a graph showing how the 

failure probability changes after the correction of 

the CBR decision. 

 

 

Fig. 6. Changes in Failure Probabilities Considering 

Decision Correction 

The graph in Fig. 6 shows how the failure 

probability changes after the correction of the CBR 

decision. The graphs show the initial failure 

probability (without prediction) and the corrected 

failure probability (taking into account the Bayesian 

network and Markov model). The initial failure 

probability shows how the component failure 

probability of the SРР increases over time in the 

absence of corrective actions. The failure 

probability increases linearly (0.05 + 0.02*t), which 

reflects the natural degradation process of 

equipment without forecasting and preventive 

measures. This scenario is typical for traditional 

diagnostic methods, where failures are recorded 

post factum, without predicting their occurrence. 

Figure 7 shows how probabilistic forecasts 

affect the adaptation of CBR decisions. Without 

adaptation, diagnostics rely only on historical data, 

which leads to high uncertainty. With adaptation, 

probabilistic models are taken into account, which 

improves diagnostic accuracy. It shows how the 

CBR model reduces the risk of SРР equipment 

failure. 

 

 

Fig. 7. Changes in generator failure probability  

(with and without CBR adaptation) 

The graph "Without CBR adaptation" 

illustrates the natural increase in generator failure 

probability without the use of forecasting and 

decision correction mechanisms. The graph "With 

CBR adaptation" shows how applying CBR in 

combination with Bayesian analysis and the 

Markov method reduces the failure probability 

through decision adaptation. Without adaptation, 

the failure probability increases exponentially due 

to accumulated generator wear. CBR adaptation 

allows for the consideration of predicted failures by 

offering corrective actions (e.g., preventive 

maintenance or load adjustment), which slows the 

growth of failure probability. 
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Fig. 8. Changes in fault diagnosis accuracy  

of marine power plants using the adaptive mechanism 

The graphs (Fig. 8) show how diagnostic 

accuracy (Accuracy, Precision, Recall, F1-score) 
changes when using CBR decision adaptation 

compared to the baseline approach. Quality metrics 

(Accuracy, Precision, Recall, and F1-score) were 
calculated on a validation set of 500 failure and 

malfunction cases, split 70/30 for training and 
testing. The graphs clearly demonstrate the 

advantages of the adaptive mechanism. Without 
adaptation, diagnostic accuracy decreases with an 

increasing number of diagnostic cycles. This 
indicates model degradation without parameter 

correction. With adaptation, accuracy steadily 
increases and reaches a high level, confirming the 

effectiveness of the adaptive mechanism. 
Table 3 demonstrates the impact of operational 

load on the failure probability of marine power 
plants. 

 

Table 3 

Impact of operational load on the failure probability  

of marine power plants 

Component 
Load 

(normalized) 

Failure 

Probability 

Generator 0.8 0.12 

Pump 0.9 0.15 

Engine 1.0 0.22 
 

For each new diagnostic case: CBR searches 
for similar cases in the database; Bayesian networks 
adjust the failure probability considering 
component dependencies; Markov processes 
predict the failure probability over time; simulation 
modeling is used to generate additional data when 
statistics are insufficient. 

Tables 4 and 5 demonstrate how the final 
diagnostic decision changes under different values 
of failure probability and remaining component life. 

Table 4  

CBR decision correction depending on risk  

and remaining resource 

Component 

Failure 

Probability 

(before 

correction) 

Failure 

Probability 

(after 

correction) 

Remaining 

Resource 

Generator 0.10 0.08 1500 hours 

Cooling 0.15 0.18 1200 hours 

Pump 0.05 0.06 1800 hours 

 

Table 5  

Final diagnostic decision depending on failure 

 probability and remaining resource 

Remaining 

Resource 

(hours) 

P failure 

(from 

Bayesian 

network) 

Final  

Diagnosis 

>10,000 <0.1 
Equipment is 

operational 

5,000 – 10,000 0.1 – 0.3 
Monitoring 

required 

1,000 – 5,000 0.3 – 0.6 

Scheduled 

maintenance 

recommended 

<1,000 >0.6 

High failure risk, 

immediate repair 

required 

 
Table 6 complements Tables 4 and 5 by 

demonstrating how the final CBR diagnostic 

decision is corrected depending on the level of risk 

and remaining resource. 
 

Table 6  

CBR decision correction depending  

on risk and remaining resource 

Remaining 
Resource 

(%) 

Low 
Failure 

Risk 

Medium 
Failure 

Risk 

High 
Failure 

Risk 

>80% 

Standard 
CBR 

decision 
applied 

Minor 
correction 
of failure 

probability 

Minor 
correction 
of failure 

probability 

50–80% 

Minor 
correction 
of failure 

probability 

Correction 
based on 
Bayesian 
networks 

Correction 
using 

Bayesian 
networks 

and 
Markov 
models 

<50% 

Correction 
using 

Bayesian 
networks 

Correction 
using 

Bayesian 
networks 

and 
Markov 
models 

Simulation 
modeling 

applied for 
prediction 
refinement 
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From the table, it follows that with a high 

remaining resource (>80%), CBR decision 

correction is minimal due to low failure probability. 

As the resource decreases (50–80%), probabilistic 

dependencies must be considered, requiring 

Bayesian networks. When the remaining resource is 

below 50%, a comprehensive approach using 

Markov models and simulation modeling is applied 

to refine failure probability forecasts.  

The results in Tables 4 – 6 confirm that the 

integration of CBR with probabilistic models and 

simulation modeling allows for dynamic adaptation 

of diagnostics based on the actual state of 

components. In particular: with high remaining 

resource (80–100%) CBR operates with minimal 

correction; in the 50–80% range, it is important to 

consider probabilistic dependencies, requiring 

Bayesian networks; when remaining resource is 

<50%, diagnostic accuracy significantly improves 

with the application of Markov models and 

simulation modeling. 

Thus, the proposed CBR decision adaptation 

mechanism improves diagnostic accuracy and 

reduces the risk of false decisions through dynamic 

adjustment of probabilistic estimates. 

In addition to the main experiments which 

discusses the impact of cognitive modeling on 

improving forecast accuracy. 

This diagram illustrates how the stages of 

knowledge formalization, synthetic data generation, 

selection, and verification are linked to the iterative 

updating of the CBR and probabilistic models 

during the learning process. 

Figure 9 shows the cycle of cognitive 

simulation modeling, which integrates expert 

knowledge and probabilistic models for the 

generation and validation of synthetic failure cases. 

In the first stage (Expert Knowledge 

Formalization), rules and ontologies are formalized 

to reflect cause-effect relationships and failure 

development scenarios. Then, a large set of 

synthetic cases is generated (Synthetic Case 

Generation), covering both typical and rare failure 

scenarios. An automated selection module 

(Automated Selection) applies an entropy-based 

criterion to filter the most informative scenarios, 

reducing the data volume and improving training 

quality. The selected cases are integrated into 

probabilistic models (Integration into Probabilistic 

Models), including Bayesian networks and Markov 

processes, to update failure probability estimates. 

During the consistency check stage (Consistency 

Check), synthetic data is compared against the 

underlying expert rules, and inconsistent cases are 

discarded. After this, the CBR mechanism and 

Bayes/Markov parameters are updated (Update 

CBR & Bayes/Markov), allowing the system to 

adapt to new data. Iterative repetition of the cycle 

(Iterative Learning & Convergence) continues until 

satisfactory stability of predictive metrics is 

achieved, ensuring continuous improvement in 

diagnostic and failure prediction accuracy. 

 

 

Fig. 9. Cycle of Cognitive Simulation Modeling 

 for the Generation and Validation of Synthetic Cases 

Thus, the proposed approach combines the 

strengths of expert knowledge with the power of 

probabilistic methods in a unified adaptive process. 

To evaluate the contribution of the cognitive 

module to adaptive CBR, a series of experiments 

was conducted on a dataset comprising 1,200 

historical cases and 10,000 synthetic scenarios 

generated by the cognitive simulation module. 

Synthetic data was selected based on maximum 

entropy of expert assessments, allowing the 

selection of the most "significant" and rare failure 

cases. All scenarios were modeled using Bayesian 

networks and Markov models under train/test 

conditions (70/30 split) with 5-fold cross-

validation, ensuring statistical reliability of the 

results. 
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An important enhancement to the adaptation 

mechanism is the use of a cognitive simulation 

model, which enables: 

Generation of synthetic training data: When 

encountering novel, previously unseen failure 

scenarios, the cognitive model replicates expert 

decision-making, generating synthetic data. The 

module produced 5,000–10,000 synthetic cases 

using cognitive simulation, selecting the most 

“essential” scenarios based on expert assessment 

entropy. In marine power plants, severe failures are 

rare and typically lack historical data. These 

generated “exotic” cases help prepare the system for 

such low-probability but critical situations. 

Synthetic scenarios undergo automated verification 

for compliance with physical and expert rules 

(Consistency Check), and their impact on the model 

is calibrated using Bayesian posterior updates. 

Additionally, key parameters of synthetic and real 

data are statistically compared, and the model is 

tested on real cases via cross-validation. These data 

fill gaps in the case base and enable the system to 

account for rare and complex situations; 

Adjustment of probabilistic distributions: 

The synthesized data is used to update probability 

distributions in Bayesian networks and to 

recalibrate the transition matrix in the Markov 

model. Adjustments are made by introducing 

additional conditional dependencies into the 

Bayesian network and updating the Markov 

transition matrix based on newly generated data; 

Integration of expert knowledge: The 

cognitive simulation model serves as a bridge 

between traditional diagnostic methods (CBR) and 

probabilistic models, allowing the system to 

consider both quantitative and qualitative aspects of 

failures. 

To quantitatively assess the effectiveness of the 

proposed approach, a series of experiments was 

conducted. The results are summarized in Table 7. 

Table 7 illustrates the impact of cognitive modeling 

on prediction accuracy. It presents key metrics 

comparing the standard approach (“CBR + Bayes + 

Markov”) with its cognitive module extension. Data 

from forecasting model comparisons used in the 

diagnostic system are shown. Average prediction 

error was evaluated using standard probabilistic 

methods (without cognitive modeling) and with 

cognitive enhancements that account for complex 

parameter dependencies. 

MAE (Mean Absolute Error) and RMSE (Root 

Mean Squared Error) showed a reduction of 39% 

and 34%, respectively. The coefficient of 

determination (R²) increased from 0.78 to 0.89, 

indicating improved explanatory power of the 

model. The average prediction error decreased from 

12.5% to 7.8% (an improvement of 4.7%), p < 0.05. 

The data analysis confirms that the use of cognitive 

modeling reduces the average failure prediction 

error by 4.7%, demonstrating its effectiveness. This 

is particularly important in cases with insufficient 

historical data or complex interdependencies among 

system parameters. 
 

Table 7  

Failure Prediction Metrics With and  

Without the Cognitive Module 

Approach 
MAE 

(%) 

RMSE 

(%) 
R² 

Average 

Prediction 

Error (%) 

Without 

Cognitive 

Modeling 

0.085 0.112 0.78 12.5 

With 

Cognitive 

Modeling 

0.052 0.074 0.89 7.8 

 

Figure 10 presents a box-and-whisker plot of 

the distribution of failure prediction errors before 

and after the integration of the cognitive module. 

This visualization allows for a quick assessment of 

key characteristics of both samples and their 

comparison. The median indicates the central error 

value: approximately 12.5% without the cognitive 

module and reduced to about 7.8% with it. This 

reflects a significant shift of the distribution center 

toward lower errors following the integration of the 

cognitive component. The interquartile range (IQR) 

in the left group spans roughly from 11% to 14%, 

whereas in the right group it narrows to 6%–9%. 

The whiskers show the range of values excluding 

outliers. Their length is significantly greater on the 

left (from ~8% to ~16%) than on the right (from 

~5% to ~12%), indicating a reduction in error 

variability after the cognitive module is added. 

Outliers are less frequent in the right box plot, 

reflecting improved model robustness: the reduction 

of abnormally high errors confirms that the 

cognitive module effectively handles rare and 

complex failure scenarios. Comparing the box plots 

before and after integration provides a visual 

assessment of the statistical significance of the 

changes. Non-overlapping boxes (IQRs) and 

medians suggest a meaningful difference between 

distributions. 

This compression of the distribution and shift 

of the median confirms that the cognitive module 

improves prediction accuracy by reducing both 
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average and maximum error values - critical for 

timely decision-making in real-time operations. 

When analyzing box plots, it's important to consider 

the sample size (n = 100 per group) to ensure the 

statistical reliability of median and quartile 

estimates. The box plot remains one of the most 

compact and informative methods for comparing 

groups on the distribution of continuous variables, 

combining key statistics (median, IQR, whiskers, 

outliers) in one chart. Figure 3.18 clearly 

demonstrates that the cognitive module not only 

shifts the error distribution toward lower values but 

also reduces variability and extreme cases, making 

the predictions more accurate and reliable. As 

shown, the integration of the cognitive component 

significantly reduces both the median error values 

and their spread, further confirming the model’s 

robustness to variation in failure scenarios. 

 

 

Fig. 10. Box Plot of Failure Prediction Error 

Distributions: Without and With the  

An additional test was conducted using a 

simplified cognitive module (without entropy-based 

case selection), which yielded an average error of 

9.3%, confirming that the key factor behind the 

improvement lies in the selection logic of the most 

"informative" scenarios. The integration of the 

cognitive module increased the processing time per 

request from 50 ms to 75 ms on a standard server 

(Intel Xeon, 16 GB RAM), which remains 

acceptable for real-time online diagnostics. 

The achieved 4.7% increase in accuracy is 

comparable to the results of [11], where integrating 

an ontological module into a CBR architecture 

improved diagnostic accuracy by about 5%. Thus, 

cognitive modeling not only complements the 

adaptive CBR mechanism but also enhances its 

flexibility in predicting the technical condition of 

complex systems, aligning with the goals of this 

study. 

This study proposes an adaptive CBR 

mechanism for the diagnosis of marine power 

plants, integrating probabilistic failure analysis 

(Bayesian networks), degradation forecasting 

(Markov processes), and simulation modeling. 

Experimental validation demonstrated that the 

proposed system achieves a diagnostic accuracy of 

91%, compared to 79% for classical CBR, while 

reducing the false alarm rate by 6.7%. The 

improvement in remaining useful life (RUL) 

prediction reached 5–7%, confirming the high 

effectiveness of the integrated approach. 

Analysis of the results shows that the most 

significant impact on diagnostic accuracy came 

from incorporating Bayesian networks to estimate 

failure probabilities. These networks accounted for 

cascading dependencies between components and 

reduced diagnostic errors by 6.8%. A similar 

increase in accuracy (up to 90%) through combined 

training of Bayesian networks on heterogeneous 

data was observed by Ademujimi & Prabhu [12], 

who employed fusion learning to integrate sensor 

data with maintenance reports from the 

International Institute of Refrigeration (IIF). 

Furthermore, Tarcsay et al.  [13] demonstrated that 

integrating FMEA methods with Bayesian networks 

enables effective differentiation between critical 

and non-critical failures, reducing false alarms, 

which fully aligns with our findings. Degradation 

forecasting using an exponential Markov model 

applied to key marine system components improved 

RUL predictions by 5–7%. Liao et al. [14] 

developed an RUL prediction approach based on a 

Wiener process. While their model successfully 

addresses multiphase degradation, it is focused on 

quantitative RUL forecasting rather than diagnostic 

assessment with adaptive refinement of features, 

which our solution provides. Sahoo et al. [15] 

presented a fault diagnosis method for gearboxes 

under uncertainty using AI techniques. The authors 

highlighted trust issues in diagnostics under limited 

data conditions. They reported a drop in accuracy to 

82% with 30% missing data using probabilistic 

neural networks, whereas the adaptive CBR 

maintained high accuracy through weight 

recalculation and simulation-based knowledge base 

augmentation. In our approach, uncertainty is 

addressed by integrating Bayesian mechanisms 

directly into the case reasoning process, enhancing 
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the reliability of the conclusions. Xu et al. [16] 

reported a 15% increase in operator trust when using 

explainable Bayesian models in HVAC systems 

(MDPI). Our approach achieves a similar level of 

explainability, while also allowing users to trace 

which cases and probabilistic dependencies 

underpinned the conclusions. Qi et al. [17] applied 

combined neural network and simplified Bayesian 

network methods for diagnostics in nuclear power. 

While their method showed high accuracy, it 

required significant computational resources and 

was not focused on real-time adaptive adjustment, 

unlike our system.. 

Future research should focus on automatic 

Bayesian network structure generation using deep 

learning techniques, expanding the cognitive 

module with trainable agents, and developing an 

ontological interpretation of diagnostic outputs to 

enhance explainability and operator trust. Thus, the 

proposed adaptive CBR mechanism demonstrates 

superiority over existing methods in diagnosing 

complex technical systems by combining high 

accuracy, adaptability, and decision transparency - 

key features for the operation of marine power 

plants in dynamically changing conditions. 

Conclusions. The goal of this study was to 

develop and experimentally validate an adaptive 

CBR mechanism for diagnosing SРР, integrating 

probabilistic failure analysis and technical condition 

forecasting. As a result of integrating CBR with 

Bayesian networks and Markov processes, fault 

detection accuracy increased from 79% to 91%; 

Bayesian networks reduced error rates by 6.8%, 

while Markov models improved remaining useful 

life (RUL) prediction by 5–7%. The generation of 

probabilistic scenarios through simulation modeling 

enhanced forecast reliability by 9.4% in the absence 

of sufficient historical data. Operational load 

analysis showed that with a load factor >1.0, the 

failure risk of key components increases by a factor 

of 3.2, requiring mandatory correction of diagnostic 

decisions. Optimization of weighting coefficients 

(α, β, γ) reduced average diagnostic error by 6.2%, 

while dynamic weight adaptation decreased false 

alarm risk by 7.3% and improved forecast accuracy 

by 8.5%. The inclusion of a cognitive simulation 

module reduced the average forecast error from 

12.5% to 7.8% and increased the accuracy of 

detecting rare faults by 5.1%. Practical 

implementation of the proposed mechanism enables 

timely detection of SРР component degradation, 

reduces unplanned downtime, and optimizes 

maintenance scheduling by improving RUL 

prediction accuracy. Future work should focus on 

expanding the case base through active learning on 

new data, automating the Bayesian network 

structure using deep learning methods, and 

developing an ontological interpretation of 

diagnostic outputs to enhance explainability and 

operator trust. 
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Вичужанін В. В., Вичужанін О. В. Адаптивне 

прецедентне міркування з імовірнісною 

інтеграцією для діагностики та прогнозування 

технічного стану складних систем 

У цьому дослідженні представлено 

вдосконалену адаптивну систему Case-Based 

Reasoning (CBR) для діагностики та прогнозування 

технічного стану суднових енергетичних установок 

у реальному часі, що досягається завдяки інтеграції 

байєсівських мереж, моделювання процесів Маркова 

та когнітивного моделювання в єдиному динамічно 

адаптивному середовищі. Традиційні підходи CBR, 

хоча й ефективні у пошуку аналогів серед історичних 

випадків, часто не здатні враховувати складні 

стохастичні залежності між компонентами 

системи, динамічні патерни деградації при змінних 

експлуатаційних навантаженнях та реальні часові 

варіації в даних датчиків. Щоб подолати ці 

обмеження, запропонована методика включає шість 

інтегрованих фаз: збір і нормалізацію даних для 

забезпечення уніфікованої стандартизації 

гетерогенних показників датчиків та 

експлуатаційних параметрів; ймовірнісний аналіз 

відмов із застосуванням байєсівських мереж для 

обчислення умовних ймовірностей відмов та 

коригування ваг релевантності випадків з 

урахуванням міжкомпонентних залежностей; 

сценарне прогнозування на основі дискретних 

моделей процесів Маркова для симуляції динаміки 

переходів станів і передбачення траєкторій 

деградації; адаптацію та об’єднання рішень, яке 

поєднує результати класичного CBR, ймовірнісні 

висновки та оцінки деградації за допомогою 

динамічно нормалізованих зважених коефіцієнтів (α, 

β, γ), що відображають поточний рівень ризику; 

підтримку бази знань шляхом включення нових 

реальних та синтетичних випадків, отриманих через 

когнітивне моделювання, що підвищує точність 

пошуку та зменшує проблему дефіциту даних; та 

автоматизоване формування профілактичних 

рекомендацій з технічного обслуговування відповідно 

до прогнозованого залишкового ресурсу. 

Експериментальна валідація на комплексному наборі 

даних із понад 11 000 історичних і синтетичних 

випадків показала діагностичну точність на рівні 

91 % порівняно з 79 % у традиційного CBR, зниження 

кількості хибних тривог на 6,7 %, покращення 

точності прогнозування залишкового ресурсу на 5–

7 % та зменшення похибки прогнозування на 4,7 %, 

що обумовлено модулем когнітивного моделювання, 

який також підвищив показники виявлення рідкісних 

відмов на 5,1 %. Ці емпіричні результати 

підтверджують високу надійність і стійкість 

системи за змінних навантажень та каскадних 

сценаріїв відмов, а також її інтеграцію в бортові 

архітектури моніторингу для оптимізації графіків 

обслуговування, зменшення незапланованих простоїв 

та підвищення експлуатаційної безпеки суднових 

енергетичних установок. 

https://doi.org/10.24963/kr.2024/37
https://doi.org/10.3390/%20pr11020369
https://doi.org/10.1109/ISSE53008.%202021.9574295
https://doi.org/10.3390/s21227633
https://doi.org/%2010.3390/s24113511
https://doi.org/10.1016/%20j.ress.2020.107361
https://doi.org/%2010.48550/arXiv.2412.01272
https://doi.org/%2010.48550/arXiv.2412.01272
https://doi.org/10.1051/ijmqe/2023009
https://doi.org/10.3389/fenrg.2022.920194


20         ВІСНИК СХІДНОУКРАЇНСЬКОГО НАЦІОНАЛЬНОГО УНІВЕРСИТЕТУ імені Володимира Даля № 4 (290) 2025 

 

 

Ключові слова: імовірнісний аналіз, байєсівські 

мережі, марковські процеси, когнітивні моделі, 

динамічна адаптація, технічна діагностика, 

експертні системи. 

 

 

 

 

 

 

Вичужанін Володимир Вікторович – д.т.н, 

професор, завідувач кафедри інформаційних 

технологій, національний університет «Одеська 

політехніка», Одеса, email: 

v.v.vychuzhanin@op.edu.ua 

Вичужанін Олексій Володимирович – доктор 

філософії, асистент, національний університет 

«Одеська політехніка», Одеса, email: 

v.v.vychuzhanin@op.edu.ua 
 

Стаття подана 09.04.2025.
 

mailto:v.v.vychuzhanin@op.edu.ua
mailto:v.v.vychuzhanin@op.edu.ua

