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This study introduces an advanced adaptive Case-Based
Reasoning (CBR) framework designed for real-time
diagnosis and prognosis of the technical condition of ship
power plants, achieved through the seamless integration
of Bayesian networks, Markov process modeling, and
cognitive simulation within a dynamically adaptive
environment. Traditional CBR approaches, while
effective at retrieving analogues from historical case
archives, often lack the capability to capture complex
stochastic dependencies among system components,
dynamic degradation patterns under varying operational
loads, and real-time contextual variations in sensor data.
To address these limitations, the proposed methodology
incorporates six integrated phases: data acquisition and
normalization, ensuring consistent standardization of
heterogeneous sensor readings and operational
parameters; probabilistic failure analysis utilizing
Bayesian networks to compute conditional failure
probabilities and adjust case relevance weights in light
of intercomponent dependencies; scenario-driven
forecasting based on discrete-time Markov process
models to simulate state transition dynamics and predict
degradation trajectories, decision adaptation and fusion,
which combines classical CBR retrieval outcomes,
probabilistic  inference results, and forecasted
degradation estimates via dynamically normalized
weighted coefficients (a, B, y) that reflect current risk
levels;, knowledge base maintenance through the
incorporation of newly acquired real cases and
synthetically generated cases from cognitive simulation,
thus enhancing retrieval accuracy and mitigating data
scarcity, and automated generation of preventive
maintenance recommendations aligned with predicted
remaining useful life. Validation experiments conducted

on a comprehensive dataset of more than 11000
historical and synthetic cases demonstrated a diagnostic
accuracy of 91 % compared to 79 % achieved by
traditional CBR, a 6.7 % reduction in false alarms, a 5—
7 % improvement in remaining useful life prediction
accuracy, and a 4.7 % decrease in forecast error
attributable to the cognitive simulation module, which
also improved rare-failure detection rates by 5.1 %.
These empirical results confirm the proposed system's
high reliability and robustness under fluctuating
operational loads and cascading failure scenarios, as
well as its seamless integration into onboard monitoring
architectures for optimized maintenance scheduling,
reduced unplanned downtime, and enhanced operational
safety of maritime power plants.

Keywords: probabilistic analysis, Bayesian networks,
Markov  processes, cognitive models, dynamic
adaptation, technical diagnostics, expert systems

Introduction. Modern technical condition
monitoring systems for complex systems,
particularly SPPs, face a number of challenges due
to increasing equipment complexity, the rapid
growth of operational data volumes, and the need
for failure prognosis over time [1]. Traditional CBR
methods, which focus primarily on retrieving
similar historical cases, are limited in their ability to
account for the stochastic nature of failure
development and the dynamic evolution of the TC
of CTSs. This limitation results in reduced
diagnostic accuracy under uncertainty and variable
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operational loads. Under wvariable loads and
complex  cascading  interactions  between
subsystems, this leads to lower diagnostic and
prognostic reliability and increases the risk of
incorrect decisions.

To enhance diagnostic performance, a
methodology for adapting CBR-based decisions has
been developed that integrates three key
components. Bayesian networks model
probabilistic dependencies between component
failures and account for cascading effects in fault
development. Markov processes forecast changes in
equipment condition over time by describing
probabilistic transitions between operational and
failed states. Simulation modeling dynamically
updates weighting coefficients in the CBR model
based on real operational data and synthesizes new
cases for underrepresented failure scenarios. The
joint use of these approaches enables more accurate
estimation of failure probabilities for critical SPP
components under current operating conditions,
correction of CBR-based decisions based on
predicted changes in technical condition, automatic
adaptation of the case base and real-time
reallocation of parameter importance, and
generation of substantiated preventive maintenance
recommendations to extend equipment life.

The need to develop adaptive CBR
mechanisms is confirmed by a review of recent
studies in the field. For instance, Nikpour and
Aamodt [2] proposed the integration of Bayesian
networks into CBR for diagnosing failures under
uncertainty, improving decision  accuracy.
However, their approach relies on static network
structures and lacks dynamic adaptation to changing
operational parameters. Similar limitations are
noted in the work of [3], who applied the Shapley
Attitude Integral to account for attribute interactions
and expert preferences in case retrieval,
significantly improving search quality. However,
their method does not address the adaptation of
decisions based on probabilistic prognosis of
system state. Schultheis [4] presents a hybrid TCBR
approach combining CBR with transformers to
adapt time series in predictive maintenance tasks,
offering enhanced explainability. Nevertheless, the
proposed model depends on the presence of similar
time series in the database and lacks quantitative
uncertainty estimation of forecasts. In their review
of explainable CBR, Schoenborn et al. [5] outlined
key goals for decision explanation but noted
insufficient integration of explainability with
probabilistic methods for equipment longevity
prediction. Kumar et al. [6] considered inter-case
dependencies in process-oriented CBR, improving
retrieval accuracy, but did not address the temporal

evolution of cases or failure forecasting. Expanding
similarity measures, Malburg et al. [7] proposed
attribute weight correction when sensor data is
missing, enhancing retrieval robustness, but their
method does not implement dynamic adaptation of
decisions. Additionally, Gould et al. [8] proposed an
AA-CBR-P argumentation mechanism
incorporating user preferences in case comparison.
However, this method does not account for dynamic
changes in equipment condition or probabilistic
failure forecasting. In their review on Real-Time
Fault Diagnosis methods, Yan et al. [9] emphasized
the importance of applying CBR for online
diagnostics in industrial systems, while also
highlighting the insufficient development of case
adaptation mechanisms based on failure prognosis.
Thus, existing research addresses isolated aspects of
improving CBR quality, but in most cases does not
provide a comprehensive solution for dynamic
decision adaptation based on probabilistic
forecasting of equipment technical condition. This
underscores the relevance of the present study.

The aim of this paper is to develop and
experimentally validate an adaptive CBR
mechanism for diagnosing ship power plants. The
proposed approach integrates probabilistic failure
analysis using Bayesian networks, time-based
forecasting of component technical condition via
Markov processes, and dynamic updating of
parameter weighting through simulation modeling.
The implementation of the proposed approach will
improve diagnostic accuracy, take into account the
dynamic evolution of equipment condition, and
provide  effective  preventive  maintenance
recommendations for extending the service life of
ship power plants.

Results. Traditional CBR systems are based on
retrieving similar failures from a case base and
applying solutions derived from past operational
experience [1, 10]. However, this approach has a
number of significant limitations: neglect of
component condition dynamics (classical systems
do not account for the gradual degradation of
equipment under operational stress); lack of
consideration for external operational factors
affecting the probability of failure progression;
insufficient modeling of cascading failure effects,
where interrelated component failures lead to
systemic disruptions that are not reflected in
diagnostic decision-making.

Integrating CBR with probabilistic methods
and simulation modeling helps to overcome these
limitations through: refinement of component

condition assessments based on modeling
probabilistic dependencies between them (using
Bayesian networks); forecasting of failure
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progression over time using Markov process
models; and dynamic updating of the case base
through simulation of new scenarios and
incorporation of actual operational data.

Some key interdependencies between failures
of SPP components and their impact on system
functionality are presented in Table 1.

Table 1

Interdependencies of SPP Component Failures
and Their Impact on the System

. Dependent System
Equipment Elements Impact
Electrical Power
Generator ;
network reduction
Pump Cooling system | Overheating
Engine Pov&fer. Loss of thrust
transmission

From the table, it follows that the failure of
individual equipment may initiate cascading
processes that critically affect the overall operability
of the SPP. For example, a generator power drop
disrupts power supply to consumers, while pump
failure leads to overheating of key systems.To
formalize the adaptive CBR decision correction
mechanism based on probabilistic analysis, we
introduce the basic dependencies.

Let: p; — the predicted probability of failure for
equipment i based on a Bayesian network; s; — the
initial similarity measure of the current case with the
i-th precedent; w; — the adaptive weight of the
precedent.

The adaptive weight of the precedent is defined
by the formula:

w; =s;-(1—py), (1)

where the correction factor (1—p;) reduces the
precedent's weight with an increased failure risk,
thereby improving diagnostic robustness under
degrading conditions.

The forecast of equipment technical condition
over time is carried out using an exponential
degradation model of operability probability:

Pyorking @) = Pyorking 0)- e M, (2)

where: A — the failure rate of the component (a
parameter dependent on operational conditions and
equipment characteristics).

The final diagnostic decision Dpyar is formed
based on the aggregation of classical CBR decision,
probabilistic analysis, and condition forecasting:

Dfinal =a Degr+ B+ DBayes + v Dsim,
3)
where a,f,y>0 are normalized weight coefficients
satisfying the condition a+f+y=1.

Thus, CBR decision adaptation includes
adjustment of initial conclusions based on
probabilistic equipment states, prediction of

technical condition changes, and case base updates
considering new operational data from complex
technical systems. This approach significantly
increases the accuracy of diagnostics and reliability
of SPP functioning under dynamic operating
conditions.

The adaptive CBR mechanism for SPP
diagnostics is implemented as an algorithm
consisting of six main stages: data collection and
preprocessing, failure probability correction,
simulation modeling, final diagnosis formation,
case base update, and maintenance recommendation
generation.

Input data:

array of operational parameters of the SPP:
X ={x, x5 0, X}

CBR case base: {(Cj,sj)}?]:l, where s; is the
similarity measure of the case.

Output data: final diagnosis Dfingq; updated
case base considering new cases and recalculated
weights.

CBR decision
following stages:

adaptation includes the

Stage 1. Data collection and preprocessing.

At this stage, the parameters of the SPP
equipment condition are collected and prepared for
further processing: reading of input parameters X;
feature normalization (min—max or Z-score) to
ensure comparability of values and increase
computational stability;

Stage 2. Failure probability correction.

This stage accounts for operational factors and
probabilistic dependencies between failures:

for each component, the posterior probability
of failure is calculated using a Bayesian network:

p; = P(failure;|X);

the weights of the cases are corrected based on
probabilistic analysis (1), which improves the
relevance of similar case retrieval;

Stage 3. Simulation modeling.
To forecast the development of the technical
system, simulation modeling is applied: generation
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of K SPP operation scenarios; for each scenario,
simulation of component state evolution over time
using the Markov model (2); evaluation of dynamic
inference Dg;,,based on failure probabilities across
all scenarios;

Stage 4. Formation of the final diagnosis.

The final diagnostic decision is formed based
on the integration of various sources of information:
calculation of the base diagnosis D gg using the
adjusted case weights wi; aggregation of CBR,
Bayesian analysis, and simulation modeling
inferences (3). The optimal solution is selected as
the adjusted diagnostic decision;

Stage 5. Case base update.

The system updates the knowledge base based
on new data and diagnostic results: addition of new
cases arising during operation; recalculation of
diagnostic accuracy metrics (Accuracy, Precision,
Recall, Fl-score) to evaluate adaptation
effectiveness; if necessary, adjustment of global
weighting coefficients o, f, y controlling the
contribution of each method;

Stage 6. Maintenance recommendation
generation. Based on the formed diagnosis and the
predicted  equipment  state, maintenance

recommendations are developed to extend the SPP's
service life and prevent the development of critical
failures.

Figure 1 illustrates the process of adapting
CBR decisions considering failure probabilistic
analysis.

Fig. 1. Adaptation of CBR Decisions Considering
Probabilistic Analysis of SPP Equipment Failures

The diagram illustrates the general concept of
adaptation: input data — forecasting — decision
correction — recommendations. A step-by-step
flowchart of the adaptive CBR mechanism
implementation is shown in Figure 2. It details the
stages of equipment condition diagnostics and

forecasting based on the integration of CBR
methods, Bayesian analysis, and simulation
modeling.

Read input parameters

i

Preprocess data

l

[ ]
[ ]
[ J

v

Generate failure scenarios

v

Choose optimal solution
Apply Monte-mactics
Aggregate via simulations
Odjust nease base

v

Choose optimal solution
Add new cases
Update releval weights

Recommend maintenance
actions

Fig. 2. Flowchart of the Adaptive CBR
Algorithm for SPP Diagnostics

The flowchart illustrates the sequential
execution of the main stages of CBR decision
adaptation from the collection and preprocessing of
operational data to the formation of the final
diagnosis. A key feature of the algorithm is the
branching after the aggregated inference: based on
the diagnosis, maintenance recommendations are
simultaneously generated, and the case base is
updated to improve the accuracy of future
diagnostic decisions.

Key features of the adaptive mechanism
include: assessment of case relevance: standard
retrieval of similar cases is complemented by
probabilistic analysis of component states, allowing
the selection of safer scenarios in cases of forecasted
failure risk; correction of diagnostic decisions:
when new data is received, the system automatically
refines the diagnosis, suggesting preventive or
repair actions if risk thresholds are exceeded;
automatic learning on new data: the case base is
dynamically updated, and model weights are
adjusted based on analysis of operational
information and forecasting results.

Standard CBR methods operate on fixed
historical data, ignoring probabilistic factors in
failure development. The integration of Bayesian
networks and Markov models transforms CBR into
a dynamically adaptive system capable of
accounting for both the current and predicted
equipment states, thereby increasing diagnostic
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accuracy and extending the life cycle of critical
technical systems.

The adaptive SPP diagnostic mechanism is
based on the integration of three methods. CBR,
probabilistic failure analysis (Bayesian networks),
and simulation modeling based on Markov
processes. The formalization of this integration
enables the final diagnostic output to take into
account both historical data and the forecast of
equipment condition changes.

The final diagnosis Dfing is defined as a
function of three components:

Dfinal = f(DCBR' DBayes; DSim)'

where f{-) is the function defining the integration
mechanism of the decisions;

Dcgr: diagnosis based on precedents,
determined by the similarity function between the
current case and historical ones; includes the
diagnosis and its associated error from the CBR
method;

Dpqyes: probabilistic diagnosis based on
Bayesian networks, taking into account the
interdependence of component failures; includes
correction based on failure probability models and
associated error;

Dgim: diagnosis based on simulation
modeling, forecasting the system’s behavior over
time; includes adjustments from the cognitive
simulation model and its related error;

Dfinq: the final diagnostic output combining
all three methods.

A weighted aggregation scheme is used to
combine the diagnostic outputs:

Dfinal =ag Degr+ Pa- DBayes + Va4 " Dsim

where ag4,B4,vq4 are weighting coefficients
reflecting the contribution of each method. These
coefficients satisfy the normalization condition:
Ag+Batva=1

The weight f; increases if the failure
probability from the Bayesian network exceeds a
threshold value. The weight ys increases if the
simulation models reveal a high risk of failure, even
if CBR finds no similar cases.

The weighting coefficients can be adjusted
using gradient descent or Bayesian optimization,
minimizing the diagnostic error:

N
* . 2
w =argmn a,By Z(Dtrue,i - Dfinal,i)
i=1

Similarly — Definition of weight coefficients.

The weight coefficients ag, B4, V4can be
determined by various methods depending on the
available data and the problem formulation.

1. Determining weight coefficients based on
dagnostic error

If the average diagnostic errors  Ecpg,
Epayes Esim are known, the weights can be set as
follows:

ag = 1/ECBR
-1 1 1 H
/ECBR+ /EBayes+ /ESim
Y
EBayes
Ba

T T T ;
/ECBR+ /EBayes+ /ESL'm

1
— /Esim
1 1 1
/ECBR + /EBayes + /ESim

Ya

2. Determining weight coefficients based on
confidence coefficients

If for each diagnostic method the confidence
level C¢pr, Cpayes) Csim 1s known, the weights can
be calculated as follows:

CcBr

A, =
d CcBr+CBayes*Csim’

CBayes

Ba

B CCBR + CBayes + CSim

CSim

Ya =
CCBR + CBayes + CSim

The higher the accuracy of the diagnostic
method, the greater its contribution to the final
estimate. The confidence coefficients
Ccarr Cpayes: Csimcan be determined based on
previous diagnostic data, for example, as the
proportion of correctly identified failures by this
method.

3. Determining weight coefficients based on
diagnostic accuracy

If the accuracies of diagnostic methods are
known (e.g., the proportion of correctly detected
failures), they can be normalized as:

PcBr

aq = ;
PCBR+PBayes+PSL'm

_ PBayes .
PCBR + PBayes + PSim '

Ba
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Ya = Psim
4=

PCBR + PBayes + PSim
Dynamic weight update.

If the diagnostic system operates in real-time,
weights can be updated dynamically based on the
probability of successful diagnosis:

ag(t+1) =aq(t) + k(PCBR - Pfinal)i
Ba(t +1) = Ba(t) + k(PBayes - Pfinal);
Yat+1) =ya(@®) + k(Psim — Pfinal)a

where Pegr, Ppayes, Psim — predicted probabilities
of correct diagnosis;

k — adaptation rate coefficient.

If there is no data on method quality, weights
can be set uniformly:

Ag+Pa+Va =

W] =

Proportional distribution based on method
accuracy.

If the relative accuracies of CBR (Pcpg),
probabilistic models (Pggyes), and simulation
modeling (Ps;,,,) are known, then a4, f; and y, are
normalized as follows:

Pcpr
ag=5———7— (1 —vq):
Pcpr + Psim
PBayes
Ba = (1 —ag);
PBayes + PSim
Pg;
Ya = (1—ay)

PBayes + PSim

Definition of a4, 4 and Y4 through inverse
errors (the smaller the error, the higher the
contribution).

If the average model errors Ecgg Epgyes and

Egim are known, the distribution is set as:

Y
E
g = 1 CBlR (1- yd);
[Ecpn T/
ECBR ESim
Y

E

Ba = SRS (1-ag);

(I—ay)

If no additional information is available,
weight coefficients B; and y, are divided equally:

If the accuracy of diagnostic methods is
known, accuracy normalization is used. If errors are
known, inverse error normalization is used. If there
is no data, uniform distribution is applied. If a
method shows higher accuracy on current data, its
weight increases. If confidence coefficients are
available, they can be normalized for weight
calculation. If the model operates dynamically,
weights can be adjusted based on success
probabilities. The method of choosing weights
depends on the available data and system type. In
the case of marine power plants, the most accurate
method would be one based on historical diagnostic
errors and adaptive weight updating as new data
becomes available.

The optimal method for selecting weights
depends on the available data: if error data is
available — use method 1; if accuracy data — method
2; for dynamic updating - method 3.
Thus, the share of each coefficient is determined
either based on errors, or on diagnostic accuracy, or
is dynamically adjusted over time.

Diagnosis based on CBR.

The CBR method assesses the similarity of a
new failure X with known cases C; in the database.
The diagnosis based on case retrieval:

N
Dopr(¥) = ) - S(X, C) - Dy
i=1

where S(X, C;) — similarity measure between the
current case X and precedent C;;
D; — diagnostic result for the i-th precedent;
w; — reliability weight of the precedent.
Bayesian diagnosis.
Diagnostic inference based on probabilistic
dependencies:

K
Dsayes = ) P(Cel E) - D
k=1
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The probability of component C; failure,
considering dependencies in the system, is set by
Bayes' formula:

P(E|Cy) - P(Cy)

P(C,|E) =
(GlE) =5 b (E10) P (6)

where P(Cy,)— prior probability of C; failure;
P(E|Cy)- likelihood of observed data given
failure of C;.

Simulation modeling

Simulation modeling predicts the probability
of failure over time.

The probability of component Cj being in a
certain state at time ¢ is determined by the Markov
model:

P(Cy,t +1) = P(Cy, t) * Perans

where P;,qns— transition probability matrix
Predicted failure probability after ¢ hours:

DSim(t) =1- P(Cth)J

where P(Cy,t) — probability calculated via the
Markov process transition matrix.

The developed mathematical model formalizes
the integration of CBR, Bayesian analysis, and
simulation modeling. The final diagnostic output
Dpina accounts for both historical data and
probabilistic  forecasts. Optimization of the
parameters a4, 4 and Y, allows the model to adapt
to specific operational conditions.

Integration of Bayesian networks and
Markov processes.

Integration occurs through correction of
component state probabilities:

P(Stlst—l' Dcgr, DSim) =
= Z P(S¢|Se-1,Uy)

i
* P(Ui|Dcpr, Dsim),

where P(S;|S;_,) — probability of transition of the
SPP to state S; per the Markov model;

P(U;|Dcgr, Dsim) —  corrective
probability from the Bayesian network.

The final diagnosis is obtained by summing
over all possible states.

Correction of CBR diagnosis based on
probabilistic forecasts.

Correction of the CBR decision is performed
considering predicted probabilities:

failure

Dadj(t) = Dcpr + g 'PBayes(t) + Ba  Psim(t)

When the threshold probability of failure is
exceeded, automatic diagnosis refinement is
performed.

Formula for updating failure probabilities
using Bayesian analysis:

P(U;|U)) = a;; - P(U)),

where @;j— influence coefficient of failure of
component j on component i.

Formula for adjusting CBR decisions
based on forecast probabilities:

Padj(D) =P(D) + Zyi * Ppayes (D),

where y;— influence coefficients of probabilistic
analysis on the final diagnosis.

Table 2 demonstrates the optimal weight
coefficients depending on the diagnostic scenario.
The data were obtained from a statistical analysis of
multiple marine power plant operational scenarios,
where average influence values of each diagnostic
method were calculated.

Table 2

Optimal Weight Coefficients Depending
on the Diagnostic Scenario

Operating
Scenario
Stable
operation
without
failures
Increased risk
due to aging
High loads and
overheating
Lack of
historical data
Emergency
situation

04 (CBR) | na(Bayes) | ys(Sim)

0.7 0.2 0.1

0.4 0.4 0.2

0.3 0.5 0.2

0.2 0.3 0.5

0.2 0.6 0.2

Analysis of the data in Table 2 shows that: in
normal operating mode, CBR contributes the most,
as historical data effectively support failure
similarity identification; under high failure risk,
Bayesian networks become more influential due to
the critical importance of considering dependencies
between components; in the absence of sufficient
data, simulation modeling dominates, as it can
generate artificial scenarios for failure prediction.
The integration algorithm was implemented in the
Python environment using the scikit-learn library
for CBR and Bayesian networks, and numpy for
simulation modeling.
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An example of the code for calculating the final

diagnosis:
import numpy as np
def update cbr_decision(prob_failure,

correction_factor):
return prob_failure * correction_factor

# Example data

components = {"Generator": 0.10, "Cooling":
0.15, "Pump": 0.05}

correction_factors =
"Cooling": 1.2, "Pump": 1.1}

# Correction of probabilities

{"Generator": 0.8,

corrected_probs = {comp:
update _cbr decision (components[comp],
correction_factors[comp])  for comp in

components}

Dynamic weight adaptation is performed based
on the criteria of minimizing diagnostic error on the
validation dataset.

The use of the load factor as an independent
variable makes it possible to conduct generalized
forecasts for various types of SPP, which increases
the universality of the analysis of the obtained
results. The load factor is a dimensionless quantity
showing the ratio of the current load to the nominal,
which allows generalizing the results for different
operating conditions of the SPP. Figure 3 presents
graphs of changes in the failure probabilities of five
key SPP subsystems depending on the load
represented through the load factor.

1- Main engine
2- Cooling system
0.05 13- Electricity supply
4- Compressed airsystem
5 -Fuel system \ 1
0.04
® 2
¢ o
= /
& 003 -
s <S5
z A 3
g 5 <
3002 —
: - 0
[
001 - —
—_—

06 0.8 2 14

10 1
Load factor (from nominal)

Fig. 3. Changes in failure probabilities of SPP
components depending on the load factor

For the main engine, Figure 3 shows that the
change in failure probabilities corresponds to an
exponential increase in failure probability as the
load factor increases. At reduced loads (factor 0.6—
0.8), the failure probability remains at 1-1.5%, but
when exceeding the nominal level (factor >1.0), the
growth accelerates, reaching over 5% at 1.4. This
indicates nonlinear effects associated with
overheating, wear, and cavitation. The cooling

system operates stably at a factor of 0.6—1.0, but
after 1.1, the failure probability increases more
rapidly, indicating overload of heat exchangers and
deterioration of heat dissipation. The power supply
system shows stability up to a factor of 1.2, after
which the failure probability begins to increase.
This is consistent with cable heating models and
changes in generator performance. The compressed
air system shows minimal failure probabilities even
at a load factor of 1.2, but after exceeding 1.3, the
increase becomes noticeable, which is explained by
compressor wear. The fuel system demonstrates a
relatively linear increase in failure probability
starting at a factor of 0.6. However, after exceeding
1.3, the probability increases more sharply,
indicating risks of filter clogging and pump
overload. A load factor exceeding 1.0 becomes a
critical zone where the failure probability grows
faster. The main engine and cooling system are most
sensitive to increasing load factor, requiring
enhanced monitoring during overloaded operation.
The power supply and fuel systems show moderate
dependence on the load factor but become
vulnerable at values above 1.3. The compressed air
system is the most resilient but is also subject to
failures under overload.

Figure 4 presents the generalized SPP failure
probability, showing the integral failure probability
of the SPP calculated based on the failure
probabilities of key components and subsystems.

Refus?
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y
40

Diagnosti
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Technical maintenance
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|
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Probability of failure (%)

100 80 20

60 40
Remaining life (%)

Fig. 4. Generalized Failure Probability of the SPP

The data is obtained based on the analysis of
probabilistic dependencies of subsystem failures
(Markov method, Bayesian networks). From Figure
4, a decrease in residual life is observed,
accompanied by an increase in the risk of failures of
components and SPP subsystems. From this follows
how the maintenance strategy changes depending
on: high residual life (80-100%) — operation is
recommended; medium residual life (40—60%) —
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maintenance or diagnostics; low residual life
(<20%) — repair or replacement. Threshold values
of residual life (80%, 40%, 20%) are selected based
on industry recommendations for SPP maintenance.

Figure 5 illustrates the change in the failure
probability of the SPP over time.
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Fig. 5. Change in the Failure Probability
of the SPP Over Time

From the graph (Fig. 5), it follows that the
probability of failure gradually increases, reflecting
equipment degradation processes, the influence of
operational factors, and the accumulation of failures
in subsystems. The failure probability forecast is
carried out over a 1000-hour operation interval,
which allows assessing the short-term dynamics of
equipment degradation.

Figure 6 presents a graph showing how the
failure probability changes after the correction of
the CBR decision.

0.8 1

o
o

o
>

Probability of failure
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0.2 _.___0
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Time (work cycles)
Fig. 6. Changes in Failure Probabilities Considering

Decision Correction

The graph in Fig. 6 shows how the failure
probability changes after the correction of the CBR

decision. The graphs show the initial failure
probability (without prediction) and the corrected
failure probability (taking into account the Bayesian
network and Markov model). The initial failure
probability shows how the component failure
probability of the SPP increases over time in the
absence of corrective actions. The failure
probability increases linearly (0.05 + 0.02*t), which
reflects the natural degradation process of
equipment without forecasting and preventive
measures. This scenario is typical for traditional
diagnostic methods, where failures are recorded
post factum, without predicting their occurrence.

Figure 7 shows how probabilistic forecasts
affect the adaptation of CBR decisions. Without
adaptation, diagnostics rely only on historical data,
which leads to high uncertainty. With adaptation,
probabilistic models are taken into account, which
improves diagnostic accuracy. It shows how the
CBR model reduces the risk of SPP equipment
failure.

Probability of generator failure
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Fig. 7. Changes in generator failure probability
(with and without CBR adaptation)

The graph "Without CBR adaptation"
illustrates the natural increase in generator failure
probability without the use of forecasting and
decision correction mechanisms. The graph "With
CBR adaptation" shows how applying CBR in
combination with Bayesian analysis and the
Markov method reduces the failure probability
through decision adaptation. Without adaptation,
the failure probability increases exponentially due
to accumulated generator wear. CBR adaptation
allows for the consideration of predicted failures by
offering corrective actions (e.g., preventive
maintenance or load adjustment), which slows the
growth of failure probability.
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Fig. 8. Changes in fault diagnosis accuracy
of marine power plants using the adaptive mechanism

The graphs (Fig. 8) show how diagnostic
accuracy (Accuracy, Precision, Recall, F1-score)
changes when using CBR decision adaptation
compared to the baseline approach. Quality metrics
(Accuracy, Precision, Recall, and F1-score) were
calculated on a validation set of 500 failure and
malfunction cases, split 70/30 for training and
testing. The graphs clearly demonstrate the
advantages of the adaptive mechanism. Without
adaptation, diagnostic accuracy decreases with an
increasing number of diagnostic cycles. This
indicates model degradation without parameter
correction. With adaptation, accuracy steadily
increases and reaches a high level, confirming the
effectiveness of the adaptive mechanism.

Table 3 demonstrates the impact of operational
load on the failure probability of marine power
plants.

Table 3

Impact of operational load on the failure probability
of marine power plants

Component Load Failure
(normalized) Probability
Generator 0.8 0.12
Pump 0.9 0.15
Engine 1.0 0.22

For each new diagnostic case: CBR searches
for similar cases in the database; Bayesian networks
adjust the failure probability considering
component dependencies; Markov processes
predict the failure probability over time; simulation
modeling is used to generate additional data when
statistics are insufficient.

Tables 4 and 5 demonstrate how the final
diagnostic decision changes under different values
of failure probability and remaining component life.

Table 4

CBR decision correction depending on risk
and remaining resource

Failure Failure
Probability | Probability | Remaining
Component (before (after Resource
correction) | correction)
Generator 0.10 0.08 1500 hours
Cooling 0.15 0.18 1200 hours
Pump 0.05 0.06 1800 hours
Table 5

Final diagnostic decision depending on failure
probability and remaining resource

. . P failure
Remaining .
(from Final
Resource . . .
(hours) Bayesian Diagnosis
network)
>10,000 <0.1 Equipment is
operational
5,000~ 10,000 | 0.1-0.3 Monttoring
required
Scheduled
1,000 — 5,000 0.3-0.6 maintenance
recommended
High failure risk,
<1,000 >0.6 immediate repair
required

Table 6 complements Tables 4 and 5 by
demonstrating how the final CBR diagnostic
decision is corrected depending on the level of risk
and remaining resource.

Table 6
CBR decision correction depending
on risk and remaining resource
Remaining Low Medium High
Resource Failure Failure Failure
(%) Risk Risk Risk
Standard Minor Minor
CBR correction | correction
0,
>80% decision of failure of failure
applied probability | probability
Correction
Minor Correction using
correction | based on Bayesian
50-80% ) . networks
of failure Bayesian
robability | networks and
p Markov
models
Correction
. using Simulation
Correction : .
usin Bayesian modeling
<50% B & networks | applied for
ayesian O
networks and prediction
Markov refinement
models
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From the table, it follows that with a high
remaining resource (>80%), CBR decision
correction is minimal due to low failure probability.
As the resource decreases (50—80%), probabilistic
dependencies must be considered, requiring
Bayesian networks. When the remaining resource is
below 50%, a comprehensive approach using
Markov models and simulation modeling is applied
to refine failure probability forecasts.

The results in Tables 4 — 6 confirm that the
integration of CBR with probabilistic models and
simulation modeling allows for dynamic adaptation
of diagnostics based on the actual state of
components. In particular: with high remaining
resource (80-100%) CBR operates with minimal
correction; in the 50-80% range, it is important to
consider probabilistic dependencies, requiring
Bayesian networks; when remaining resource is
<50%, diagnostic accuracy significantly improves
with the application of Markov models and
simulation modeling.

Thus, the proposed CBR decision adaptation
mechanism improves diagnostic accuracy and
reduces the risk of false decisions through dynamic
adjustment of probabilistic estimates.

In addition to the main experiments which
discusses the impact of cognitive modeling on
improving forecast accuracy.

This diagram illustrates how the stages of
knowledge formalization, synthetic data generation,
selection, and verification are linked to the iterative
updating of the CBR and probabilistic models
during the learning process.

Figure 9 shows the cycle of cognitive
simulation modeling, which integrates expert
knowledge and probabilistic models for the
generation and validation of synthetic failure cases.
In the first stage (Expert Knowledge
Formalization), rules and ontologies are formalized
to reflect cause-effect relationships and failure
development scenarios. Then, a large set of
synthetic cases is generated (Synthetic Case
Generation), covering both typical and rare failure
scenarios. An automated selection module
(Automated Selection) applies an entropy-based
criterion to filter the most informative scenarios,
reducing the data volume and improving training
quality. The selected cases are integrated into
probabilistic models (Integration into Probabilistic
Models), including Bayesian networks and Markov
processes, to update failure probability estimates.
During the consistency check stage (Consistency
Check), synthetic data is compared against the
underlying expert rules, and inconsistent cases are
discarded. After this, the CBR mechanism and

Bayes/Markov parameters are updated (Update
CBR & Bayes/Markov), allowing the system to
adapt to new data. Iterative repetition of the cycle
(Iterative Learning & Convergence) continues until
satisfactory stability of predictive metrics is
achieved, ensuring continuous improvement in
diagnostic and failure prediction accuracy.

= 1.Expert Knowledge
formatization

!

2.Syntetic
Case Generation

W

3. Automated Selection

W

4. Integration into
Probabilistic Models

i
S5.Consistency Check
(Automated Expert)

!

6. Update CBR
and
BayvesMarcov

w
T.Iterative Learning
and

Convergence

S

Fig. 9. Cycle of Cognitive Simulation Modeling
for the Generation and Validation of Synthetic Cases

Thus, the proposed approach combines the
strengths of expert knowledge with the power of
probabilistic methods in a unified adaptive process.

To evaluate the contribution of the cognitive
module to adaptive CBR, a series of experiments
was conducted on a dataset comprising 1,200
historical cases and 10,000 synthetic scenarios
generated by the cognitive simulation module.
Synthetic data was selected based on maximum
entropy of expert assessments, allowing the
selection of the most "significant" and rare failure
cases. All scenarios were modeled using Bayesian
networks and Markov models under train/test
conditions (70/30 split) with 5-fold cross-
validation, ensuring statistical reliability of the
results.
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An important enhancement to the adaptation
mechanism is the use of a cognitive simulation
model, which enables:

Generation of synthetic training data: When
encountering novel, previously unseen failure
scenarios, the cognitive model replicates expert
decision-making, generating synthetic data. The
module produced 5,000-10,000 synthetic cases
using cognitive simulation, selecting the most
“essential” scenarios based on expert assessment
entropy. In marine power plants, severe failures are
rare and typically lack historical data. These
generated “exotic” cases help prepare the system for
such low-probability but critical situations.
Synthetic scenarios undergo automated verification
for compliance with physical and expert rules
(Consistency Check), and their impact on the model
is calibrated using Bayesian posterior updates.
Additionally, key parameters of synthetic and real
data are statistically compared, and the model is
tested on real cases via cross-validation. These data
fill gaps in the case base and enable the system to
account for rare and complex situations;

Adjustment of probabilistic distributions:
The synthesized data is used to update probability
distributions in Bayesian networks and to
recalibrate the transition matrix in the Markov
model. Adjustments are made by introducing
additional conditional dependencies into the
Bayesian network and updating the Markov
transition matrix based on newly generated data;

Integration of expert knowledge: The
cognitive simulation model serves as a bridge
between traditional diagnostic methods (CBR) and
probabilistic models, allowing the system to
consider both quantitative and qualitative aspects of
failures.

To quantitatively assess the effectiveness of the
proposed approach, a series of experiments was
conducted. The results are summarized in Table 7.
Table 7 illustrates the impact of cognitive modeling
on prediction accuracy. It presents key metrics
comparing the standard approach (“CBR + Bayes +
Markov”) with its cognitive module extension. Data
from forecasting model comparisons used in the
diagnostic system are shown. Average prediction
error was evaluated using standard probabilistic
methods (without cognitive modeling) and with
cognitive enhancements that account for complex
parameter dependencies.

MAE (Mean Absolute Error) and RMSE (Root
Mean Squared Error) showed a reduction of 39%
and 34%, respectively. The coefficient of
determination (R?) increased from 0.78 to 0.89,
indicating improved explanatory power of the

model. The average prediction error decreased from
12.5% to 7.8% (an improvement of 4.7%), p <0.05.
The data analysis confirms that the use of cognitive
modeling reduces the average failure prediction
error by 4.7%, demonstrating its effectiveness. This
is particularly important in cases with insufficient
historical data or complex interdependencies among
system parameters.

Table 7
Failure Prediction Metrics With and
Without the Cognitive Module
Average
Approach l\(/[oz/:;ﬂ R(ol\iiE R? Prediction
Error (%)
Without
Cognitive | 0.085 | 0.112 | 0.78 12.5
Modeling
With
Cognitive | 0.052 | 0.074 | 0.89 7.8
Modeling

Figure 10 presents a box-and-whisker plot of
the distribution of failure prediction errors before
and after the integration of the cognitive module.
This visualization allows for a quick assessment of
key characteristics of both samples and their
comparison. The median indicates the central error
value: approximately 12.5% without the cognitive
module and reduced to about 7.8% with it. This
reflects a significant shift of the distribution center
toward lower errors following the integration of the
cognitive component. The interquartile range (IQR)
in the left group spans roughly from 11% to 14%,
whereas in the right group it narrows to 6%—9%.
The whiskers show the range of values excluding
outliers. Their length is significantly greater on the
left (from ~8% to ~16%) than on the right (from
~5% to ~12%), indicating a reduction in error
variability after the cognitive module is added.
Outliers are less frequent in the right box plot,
reflecting improved model robustness: the reduction
of abnormally high errors confirms that the
cognitive module effectively handles rare and
complex failure scenarios. Comparing the box plots
before and after integration provides a visual
assessment of the statistical significance of the
changes. Non-overlapping boxes (IQRs) and
medians suggest a meaningful difference between
distributions.

This compression of the distribution and shift
of the median confirms that the cognitive module
improves prediction accuracy by reducing both



BICHWK CXIOHOYKPATHCHKOIO HALIIOHANIBHOIO YHIBEPCUTETY iMmeHi Bonoaumupa fans Ne 4 (290) 2025 17

average and maximum error values - critical for
timely decision-making in real-time operations.
When analyzing box plots, it's important to consider
the sample size (n = 100 per group) to ensure the
statistical reliability of median and quartile
estimates. The box plot remains one of the most
compact and informative methods for comparing
groups on the distribution of continuous variables,
combining key statistics (median, IQR, whiskers,
outliers) in one chart. Figure 3.18 clearly
demonstrates that the cognitive module not only
shifts the error distribution toward lower values but
also reduces variability and extreme cases, making
the predictions more accurate and reliable. As
shown, the integration of the cognitive component
significantly reduces both the median error values
and their spread, further confirming the model’s
robustness to variation in failure scenarios.
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Without cognitive module With cognitive module

Fig. 10. Box Plot of Failure Prediction Error
Distributions: Without and With the

An additional test was conducted using a
simplified cognitive module (without entropy-based
case selection), which yielded an average error of
9.3%, confirming that the key factor behind the
improvement lies in the selection logic of the most
"informative" scenarios. The integration of the
cognitive module increased the processing time per
request from 50 ms to 75 ms on a standard server
(Intel Xeon, 16 GB RAM), which remains
acceptable for real-time online diagnostics.

The achieved 4.7% increase in accuracy is
comparable to the results of [11], where integrating
an ontological module into a CBR architecture
improved diagnostic accuracy by about 5%. Thus,
cognitive modeling not only complements the
adaptive CBR mechanism but also enhances its

flexibility in predicting the technical condition of
complex systems, aligning with the goals of this
study.

This study proposes an adaptive CBR
mechanism for the diagnosis of marine power
plants, integrating probabilistic failure analysis
(Bayesian networks), degradation forecasting
(Markov processes), and simulation modeling.
Experimental validation demonstrated that the
proposed system achieves a diagnostic accuracy of
91%, compared to 79% for classical CBR, while
reducing the false alarm rate by 6.7%. The
improvement in remaining useful life (RUL)
prediction reached 5-7%, confirming the high
effectiveness of the integrated approach.

Analysis of the results shows that the most
significant impact on diagnostic accuracy came
from incorporating Bayesian networks to estimate
failure probabilities. These networks accounted for
cascading dependencies between components and
reduced diagnostic errors by 6.8%. A similar
increase in accuracy (up to 90%) through combined
training of Bayesian networks on heterogeneous
data was observed by Ademujimi & Prabhu [12],
who employed fusion learning to integrate sensor
data with maintenance reports from the
International Institute of Refrigeration (IIF).
Furthermore, Tarcsay et al. [13] demonstrated that
integrating FMEA methods with Bayesian networks
enables effective differentiation between critical
and non-critical failures, reducing false alarms,
which fully aligns with our findings. Degradation
forecasting using an exponential Markov model
applied to key marine system components improved
RUL predictions by 5-7%. Liao et al. [14]
developed an RUL prediction approach based on a
Wiener process. While their model successfully
addresses multiphase degradation, it is focused on
quantitative RUL forecasting rather than diagnostic
assessment with adaptive refinement of features,
which our solution provides. Sahoo et al. [15]
presented a fault diagnosis method for gearboxes
under uncertainty using Al techniques. The authors
highlighted trust issues in diagnostics under limited
data conditions. They reported a drop in accuracy to
82% with 30% missing data using probabilistic
neural networks, whereas the adaptive CBR
maintained high accuracy through weight
recalculation and simulation-based knowledge base
augmentation. In our approach, uncertainty is
addressed by integrating Bayesian mechanisms
directly into the case reasoning process, enhancing
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the reliability of the conclusions. Xu et al. [16]
reported a 15% increase in operator trust when using
explainable Bayesian models in HVAC systems
(MDPI). Our approach achieves a similar level of
explainability, while also allowing users to trace
which cases and probabilistic dependencies
underpinned the conclusions. Qi et al. [17] applied
combined neural network and simplified Bayesian
network methods for diagnostics in nuclear power.
While their method showed high accuracy, it
required significant computational resources and
was not focused on real-time adaptive adjustment,
unlike our system..

Future research should focus on automatic
Bayesian network structure generation using deep
learning techniques, expanding the cognitive
module with trainable agents, and developing an
ontological interpretation of diagnostic outputs to
enhance explainability and operator trust. Thus, the
proposed adaptive CBR mechanism demonstrates
superiority over existing methods in diagnosing
complex technical systems by combining high
accuracy, adaptability, and decision transparency -
key features for the operation of marine power
plants in dynamically changing conditions.

Conclusions. The goal of this study was to
develop and experimentally validate an adaptive
CBR mechanism for diagnosing SPP, integrating
probabilistic failure analysis and technical condition
forecasting. As a result of integrating CBR with
Bayesian networks and Markov processes, fault
detection accuracy increased from 79% to 91%;
Bayesian networks reduced error rates by 6.8%,
while Markov models improved remaining useful
life (RUL) prediction by 5-7%. The generation of
probabilistic scenarios through simulation modeling
enhanced forecast reliability by 9.4% in the absence
of sufficient historical data. Operational load
analysis showed that with a load factor >1.0, the
failure risk of key components increases by a factor
of 3.2, requiring mandatory correction of diagnostic
decisions. Optimization of weighting coefficients
(a, B, y) reduced average diagnostic error by 6.2%,
while dynamic weight adaptation decreased false
alarm risk by 7.3% and improved forecast accuracy
by 8.5%. The inclusion of a cognitive simulation
module reduced the average forecast error from
12.5% to 7.8% and increased the accuracy of
detecting rare faults by 5.1%. Practical
implementation of the proposed mechanism enables
timely detection of SPP component degradation,
reduces unplanned downtime, and optimizes

maintenance scheduling by improving RUL
prediction accuracy. Future work should focus on
expanding the case base through active learning on
new data, automating the Bayesian network
structure using deep learning methods, and
developing an ontological interpretation of
diagnostic outputs to enhance explainability and
operator trust.
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Buuy:kanin B. B., Buuy:xanin O. B. AnantuBne
npeueieHTHe MipKyBaHHS 3 iMoBipHicHOIO
iHTerpauni€l0 Aas MiarHOCTUKM Ta NPOrHO3YBaHHS
TeXHIYHOT0 CTAHY CKJIATHUX CHCTEM

\%4 Ybomy 00CIONCEeHHT npeocmaeieHo
soockonaneny — aoanmueny  cucmemy  Case-Based
Reasoning (CBR) ons diacnocmuxu ma npocHO3y8aHHs
MEXHIYHO20 CMAHY CYOHOBUX eHePLeMUYHUX YCIAHOB0K
V peanbHOMY 4aci, Wo 00CA2AEMbCA 3A80AKU iHmezpayii
batieciscoKux mepessc, MooentoganHs npoyecie Maprosa
ma KOZHIMUBHO20 MOOENIO8AHHA 8 EOUHOMY OUHAMIYHO
aoanmusHomy cepedosuwyi. Tpaouyitini nioxoou CBR,
Xoua il epekmusHi y nOWYKY aHai02ie cepeod iCMmopudHUx
6UNAOKIB, YACMO He 30amHi 6paxoeyeamu CKIAOHI
CMOXACMUYHL  3ANeHCHOCMI  MINC ~ KOMNOHEHMAaMU
cucmemu, OUHAMIYHI namepHu d0e2padayii npu 3MIHHUX
EKCHIYAmAayitiHuxX HABAHMANCEHHAX MA PeanvHi 4acogi
eapiayii 6 oOanux Oamuuxie. IlJo6 nodonamu yi
00MedHCeHHs1, 3aNPONOHOBAHA MEMOOUKA BKIIOYAE UWiCMb
inmezposanux ¢pas: 30ip i HOpmanizayio Oawmux O
3abe3neuenHs VHIiKOBaAHOT cmanoapmuszayii
2emepoceHHUX NOKA3HUKIB 0amuyuKie ma
eKCNyamayiinux napamempis, UMOBIPHICHUL aAHATI3
8I0MO8 [3 3ACMOCYBAHHAM OAUECIBCOKUX Mepedc O
O00UUCTIeHHSI  YMOGHUX — UMOGIpDHOCMEU — 8IOMO8  mda
KOpUSY8AHHA 642  PeNesaHmHocmi — unaokie 3
VPAxXy8aHHAM — MIHCKOMNOHEHMHUX — 3ANeHCHOCEl,;
cyenapHe NPOSHO3VBAHHA HA OCHOBI  OUCKPEMHUX
Mooeneu npoyecie Mapxosa 0nsi cumyaayii OUHAMiKu
nepexooieé cmauie i nepedOayeHHs  MPAEKMOPIl
dezpadayii; adanmayiro ma 06 €OHaHHA piuieHb, AKe
noeonye pezynomamu kiacuunoeo CBR, iimogipHicHi
BUCHOBKU ma OyiHKU Oezpadayii 3a O00NOMO2OK
OUHAMIYHO HOPMATI308AHUX 38AICEHUX Koehiyienmis (o,
B, ), wo sidobpadxcaromv ROMOUHUL PIGeHb PUSUKY,
niompumky 6a3u 3HAHbL WIAXOM 6KIIOYEHHS HOBUX
PeanbHux ma CUHMemu4HUX 8UNAOKi8, OMPUMAHUX Yepe3
KOCHIMUGHEe MOOeN08AHHA, WO NIOBUWYE MOUHICIb
NOWLYKY ma 3meHuye npobiemy oepiyumy Oanux, ma
aemomamuzoeane  (Qopmysanns — npoiraxmuyHux
PeKoMeHOaYill 3 MeXHIYH020 00CTY208Y8AHHS 8I0NOBIOHO
0o NPO2HO308AHO20 3AAUUKOB020 pecypcy.
Excnepumenmanvua sanioayis Ha KoMniekcCHOMY HAOOPI
Odanux i3 nonad 11000 icmopuunux i cuHmemuyHux
BUNAOKIE NOKA3aNa OIAZHOCMUYHY MOYHICMb HA DIGHI
91 % nopisusano 3 79 %y mpaouyitinoeco CBR, snudicenns
Kinbkocmi XubHux mpugoe Ha 06,7 %, NnoKpaweHHs
MOYHOCMI NPOSHO3YB8AHHI 3ATUUKOBO20 pecypcy Ha 5—
7 % ma 3menwents noxubku npoenosysanns ua 4,7 %,
wWo 00YMOBIEeHO MOOYIeM KOSHIMUBHO20 MOOETI0BAHMNS,
AKUL MAKONC NIOBUUE NOKAZHUKU BUSGNEHHSL PIOKICHUX
giomoe Ha 5,1%. Lli emnipuuni  pezyremamu
niOmMeepoNCYIomb  UCOKY HAOIIHIcMb 1 cmilKicmb
cucmemu 3a 3MIHHUX HAGAHMAJICEHb MA KACKAOHUX
cyenapiie 8iomos, a maxodc it inmezpayiro 6 60pmosi
apximexmypu MOHIMOpuHey 0isi onmumizayii epagixie
00C1y208y8aHHsl, 3MEHUIEHHS HE3ANJIAHOBAHUX NPOCMOIB
ma nioBUWEeHHs eKCNIAYamayitiHoi 6e3neku CYOHOBUX
eHepeemuyHUX YCMaHoB8oK.
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eKcnepmmi cucmemu.
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