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This paper presents a comprehensive experimental
validation of an integrated approach to the diagnosis of
the technical condition (TC) of complex technical
systems (CTS), using ship power plants (SPPs) as an
example. The proposed methodology combines
precedent-based logic (Case Based Reasoning — CBR),
probabilistic forecasting using Bayesian networks and
Markov chains, and simulation modeling of degradation
scenarios and cascading failures. Testing was conducted
under three scenarios: normal operating mode, high-
load mode, and a scenario with limited data availability,
which enabled a thorough assessment of the algorithms'
adaptability and resilience to changing operational
factors.  Classical binary classification  metrics
(Accuracy, Precision, Recall, and F'1 score) were used for
quantitative evaluation of diagnostic quality, along with
newly introduced extended indicators: weighted
accuracy (WAcc), F1 score accounting for the criticality
of component failures (FIW), recall weighted by failure
risk (RecallR), cost-adjusted precision for false alarms
(PrecisionC), and the Diagnostic Stability Index (DSI).
The results of the multi-scenario experiment showed a
consistent improvement in all major indicators:
Accuracy increased from 78.5% to 85.3%, Precision from
75.2% to 83.1%, Recall from 80.1% to 87.6%, F1 score
from 77.5% to 85.3%, RecallR reached 91.0%, and DSI
was 0.983. Five-fold cross-validation yielded a standard
deviation of FI1 score at 2.2%, confirming the
reproducibility and reliability of the proposed method for
experimental testing of the integrated diagnostic
approach for CTS. The implementation of a cyclic
procedure "simulation, probabilities, CBR adaptation”
significantly reduced the number of false alarms and
missed critical failures in SPP equipment. The practical
significance of the approach lies in its potential

integration into SCADA/PMS systems of marine CTS and
ground power stations, facilitating a shift to intelligent
predictive maintenance, thereby reducing unplanned
downtime, lowering costs, and enhancing equipment
reliability. Future research prospects include increasing
the adaptability of the approach, expanding the
precedent base, and developing tools for automated
processing of heterogeneous data.

Keywords: predictive diagnostics, Bayesian networks,
CBR adaptation, failure simulation modeling, risk-
oriented metrics, diagnostic stability, intelligent
maintenance

Introduction. In modern CTS, such as ship
power plants SPP, issues of reliability and timely
detection of equipment failures are critically
important for ensuring operational safety and
optimizing maintenance costs [1, 2]. Existing
intelligent approaches to the diagnosis of the
technical condition of CTS traditionally rely either
on CBR, which enables the use of accumulated
experience from similar incidents, or on
probabilistic models (Bayesian networks and
Markov chains), which account for uncertainty and
the dynamics of failure development in equipment
components, or on simulation modeling, which
generates degradation scenarios for components.
However, the application of each of these methods
individually is often insufficient for complex
systems with cascading failure effects [3, 4].

In response to these limitations, the field of
hybrid and integrated models for diagnosis and
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prognosis of the TS of complex systems, combining
the advantages of different methodological blocks,
has been actively developing in recent years. A
systematic review of hybrid methods shows that a
properly  designed combination of CBR,
probabilistic models, and simulation modeling can
yield a synergistic effect, improving the accuracy of
diagnostics and predictions of equipment TC [5].
Researchers Nikpour & Aamodt [6] introduced the
BNCreek system, which combines CBR with a
Bayesian network for fault diagnosis of CTS
equipment under uncertainty. However, simulation
modeling was not included, nor was a multi-
scenario experiment conducted, and the system's
performance evaluation was limited to comparisons
with expert assessments without formal metrics
such as Precision/Recall/F1. Yang et al. [7]
integrated CBR and Bayesian Networks for
diagnosis and prognosis of the TC of complex
systems, with validation based on real sensor data.
However, their integration of CBR and Bayesian
Networks did not involve Markov chains, and the
simulation did not explore cascading equipment
failures. A multidimensional evaluation of
diagnostic and prognostic metrics was also not
performed. Soleimani et al. [8] developed a
combined HMM (Hidden Markov Model a
statistical model used for analyzing sequences
where the system is described as having hidden
states that transition with certain probabilities) for
equipment failure detection and a Bayesian
Network for root cause identification. This
approach proved effective for fault diagnostics
using an automotive system example. However, the
authors did not use CBR, and their diagnostic
system lacked a simulation module. The experiment
covered only a single application domain. El-
Awady, Ahmed & Ponnambalam, Kumaraswamy
[9] proposed Simulation Supported Bayesian
Networks (SSBN) and Markov Chain Simulation
Supported BNs (MCSSBN) for analyzing
equipment failures in complex networks through
simulation and probabilistic analysis. SSBN aims to
improve the accuracy of probabilistic models
through more realistic and variable scenarios.
MCSSBN accounts for the dynamic changes in
equipment TS over time, which is particularly
important for diagnosing and predicting equipment
degradation. However, the authors did not include a
CBR component in their development, did not
conduct experimental validation of SSBN and
MCSSBN for diagnosing equipment failures in
complex technical systems under various
emergency scenarios, and did not employ diverse
diagnostic accuracy metrics.

In their review, Zhong et al. [10] examined the
application of digital twins in predictive
maintenance of CTS equipment, including systems
used in shipbuilding. However, as a review article,
it did not present experimental implementations of
the integration of CBR, probabilistic models, and
simulation modeling. A comprehensive review of
Predictive Maintenance (PdM) methods for the
maritime industry, including ML algorithms for data
processing, diagnostics, and failure forecasting, was
provided by Kalafatelis et al. [11]. A drawback of
this theoretical review is the absence of a practical
implementation of an integrated method. The
authors also did not consider CBR or Markov
simulations. Emre Ozaydmn et al. [12] used a
Bayesian Network approach for analyzing
equipment failures on ships. The resulting data were
compared with historical data, with no focus on
post-failure analysis. A CBR block was not used,
and no failure prediction simulation was conducted.
Michail Cheliotis et al. [13] proposed a framework
for diagnosing equipment failures in CTS based on
operational data and failure probabilities, supported
by ML algorithms. Their development did not
include a CBR database or simulation scenarios of
CTS equipment failures. Diagnostic accuracy was
assessed using only a single metric, and no multi-
scenario validation of failure diagnostic accuracy
was performed.

Despite the presence of these studies, there
remains a lack of experimental verifications of
hybrid approaches specifically applied to ship-
based CTS wusing multidimensional metrics
(Accuracy, Precision, Recall, F1 score). Existing
reviews either cover the general theory of
hybridization or focus on individual technological
components (digital twin, Bayesian networks), but
do not provide a comprehensive analysis of the
synergy of all three components within a single
experimental case.

Purpose and objectives of experimental
testing

The purpose of this article is to organize and
conduct multi-scenario experimental testing of an
integrated method for diagnostics and prognostics
of TC in complex systems, using the example of an
SPP. The testing employs multidimensional quality
metrics - Accuracy, Precision, Recall, and F1 Score
- which enable: quantitative confirmation of the
synergistic effect resulting from the integration of
CBR, probabilistic models, and simulation
modeling; analysis of the method’s robustness
under various operational modes (normal mode,
increased loads, incomplete data); development of
practical recommendations for implementation in
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diagnostics and prognostics systems of complex
technical systems for various applications.

Within the integrated approach to diagnostics
and prognostics of TC SPP technical systems, an
adaptive mechanism for CBR decision correction is
implemented. This mechanism combines three
information sources: probabilistic forecasting
(Bayesian networks and Markov chains) — for
estimating current and future probabilities of
component failures; Remaining Useful Life (RUL)
prediction based on statistical models
(MAE/RMSE) that refine the expected time to
failure; simulation modeling — for generating
degradation and cascading failure scenarios,
allowing CBR decisions to be adjusted by
accounting for potential nonlinear interactions
between system nodes. At each diagnostic cycle, the
CBR core receives updated failure probability
estimates and scenarios from the probabilistic
models and the simulator, then dynamically
recalculates feature weights and refines the
selection of similar cases. This approach ensures
more accurate and robust diagnostics, even under
changing operational factors and incomplete data.

The main testing objectives include: evaluating
the impact of integrating the adaptive mechanism
into the CBR diagnostic structure, which leverages
probabilistic forecasting and RUL analysis;
analyzing the influence of probabilistic methods
(Bayesian networks, Markov processes) on the
accuracy of technical state predictions and failure
probabilities; determining the contribution of
simulation modeling to the accuracy of equipment
failure forecasting, including assessing how
cascading effects influence prediction accuracy;
comparing various method combinations and
evaluating their effectiveness based on key failure
diagnostics accuracy metrics.

Real failure data is used for comparison. The
testing is conducted on a simulation model of the
SPP, which includes: historical failure data (from
the OREDA — Offshore Reliability Data database

[14]); simulated degradation scenarios of
components, mimicking different operational
modes; Bayesian networks accounting for

probabilistic interrelations between component
failures; Markov processes applied to predict failure
probabilities over time; CBR diagnostic results -
conclusions made by the system based on case
analysis and decision adaptation; Adjustments
based on RUL predictions and cascading failure
effects (e.g., failure of one node increases the
probability of failure in other equipment nodes);
simulation failure data results from the simulation
model, where failure of one SPP component can

lead to failures in connected system nodes
(cascading effects considered). Testing covers
various operational scenarios, including: normal
conditions, standard operating mode; accelerated
wear, increased loads and harsh operational
environments; emergency conditions, unexpected
failures and stress impacts on the system.

CBR with adaptation implies not merely using
a case base, but dynamically adjusting decisions
based on predicted RUL and cascading failure
probabilities obtained from probabilistic models. To
assess the quality of SPP equipment failure
diagnostics, the following accuracy metrics are
used: Precision — the proportion of correctly
predicted failures among all predicted failures;
Recall — the proportion of actual failures that were
correctly predicted; F1 Score — the harmonic mean
of precision and recall; Accuracy — the total number
of correctly classified cases (both failures and non-
failures).

The average prediction error of RUL is
evaluated using: Mean Absolute Error (MAE) —
average absolute error in RUL prediction; Root
Mean Square Error (RMSE) — root mean square
error, which accounts for large deviations. Analysis
of false positives and false negatives includes: False
Positive (FP) — incorrect diagnostics where the
system wrongly identifies a healthy component as
faulty; False Negative (FN) — missed failures where
the system fails to predict a failure that actually
occurs. A detailed analysis of FP and FN helps
improve decision-making algorithms and minimize
critical errors. True Positive (TP) — correct
prediction of a failure that actually occurs; True
Negative (TN) — correct prediction that no failure
occurs and indeed none happens.

Several operational testing scenarios were
developed, differing in load levels, failure
frequency, and operating conditions. This allows for
an assessment of the integrated method’s robustness
and its ability to function correctly under various
operating modes.

The diagnostic CBR module is based on a case
base of 235 structured cases, which include
descriptions of failures, operating conditions,
degradation parameters, and the decisions made.
The cases were developed with input from industry
experts with at least 10 years of experience in
EMCS operation and maintenance. Each case was
assigned a feature vector, including values of
temperature, pressure, vibration, operating time,
and failure characteristics of SPP elements,
components, and subsystems. The structure of the
case base enables efficient similarity-based search
using a feature similarity metric, where feature
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weights are defined by expert methods and
calibrated during preliminary testing.

Test scenarios for the technical condition of
the SPP

To verify the effectiveness of the proposed
integrated method for diagnosing and predicting
failures of elements, components, and subsystems
of the SPP, three main operational test scenarios
were developed to simulate various working
conditions of the system. These scenarios allow for
an assessment of the method’s accuracy, robustness,
and adaptability under real operating conditions.

Scenario 1. Nominal Mode, in which the SPP
operates under normal conditions with typical loads
and expected operational parameters. The goal of
testing the technical condition of the SPP in this
scenario is to verify the baseline level of diagnostic
and failure prediction accuracy, as well as to
identify possible false positives and missed failures.
A full set of diagnostic data is used in this scenario
(temperature, pressure, vibration, power —Table 1),
and the number of unexpected failures is minimal.
Temperature is monitored in the main engine
cylinders, oil, and cooling systems. Pressure — in
hydraulic and fuel lines. Vibrations — on bearings
and shaft lines. Power — at the output of generator
and power units. These parameters serve as input
features for both the CBR and probabilistic models.

Table 1
Diagnostic Features of SPP Failures Used
in the Integrated Model
Source / Diagnostic
Parameter . c
Component Significance
Engine Indicator of
Temperature | cylinders, heat | overheating, early
exchangers, oil | wear
Oil system, | Leaks, blockages,
Pressure . :
cooling system | valve malfunctions
Shaft lines, | Yicchanical
. . . defects,
Vibration bearings, misalionment
turbines & ’
wear
Indirect indicator
Generator sets, .
Power . . of  failure or
main engines .
efficiency loss

Scenario 2. The operation of the SPP is carried
out under increased load conditions, leading to
accelerated degradation of key system equipment.
The purpose of PPS testing is to assess the method’s
ability to recognize changes in failure dynamics and
adapt to changing operational conditions. A
distinctive feature of this scenario is higher
temperature, vibration, and load cycles; accelerated

wear of mechanisms; and increased probability of
failures.

Scenario 3. Fault diagnosis under conditions of
limited information about past incidents (e.g.,
incomplete system operation data). The purpose of
SPP testing is to assess the effectiveness of
simulation modeling and the adaptability of CBR in
the absence of sufficient historical information. The
distinctive feature of this scenario is the artificial
exclusion of part of the case base data and the need
to test the method’s robustness under limited input
conditions.

To evaluate the effectiveness of the proposed
method, a simulation model of the SPP was
developed. During testing, various failure scenarios
were generated (normal conditions, accelerated
wear, cascading failures); data from OREDA and
accumulated CBR knowledge bases were used; and
fault diagnostics were performed both with and
without CBR solution adaptation. Each scenario
includes: a set of input parameters (temperature,
pressure, vibration, power, etc.); actual component
failures recorded in the database; diagnostic
methods used in the scenario (CBR, probabilistic
models, simulation modeling); data sources for
testing (OREDA, simulation models, limited data
sets). Bayesian networks were constructed for each
key piece of SPP equipment, taking into account
known causal relationships between the
equipment’s technical state parameters and failure
probabilities. The average number of nodes in a
network was 7, with the number of arcs ranging
from 8 to 15 depending on the complexity of the
SPP equipment. Prior failure probabilities were
determined based on OREDA data and adjusted
during the training phase based on simulation
results. To model the temporal evolution of
component states, discrete-time Markov chains with
4-6 degradation states were used: "operational",
"initial degradation", "moderate degradation”,
"critical condition", and "failure". Transition
probabilities were calculated based on cumulative
operational data and fitted using MAE and RMSE
metrics on historical time series. Probability updates
occurred at each diagnostic cycle based on the
principle: "observation, recalculation, forecast".

The fixation of input parameters for the tests is
presented in Table 2.

The data presented in Table 2 clearly capture
the differences between the system's operational
scenarios and highlight the factors influencing
component failure diagnostics in SPP subsystems.
Since the scenarios are based on real data from
OREDA and simulation modeling, the testing
methodology becomes more substantiated and
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reproducible. The developed scenarios make it
possible to verify the robustness of the SPP
equipment failure diagnostics method under various
operational conditions.

similarity to past cases, without the use of
probabilistic methods; CBR with adaptation —
diagnostics were adjusted using Bayesian networks
and Markov models, enabling the consideration of
cascading failure risks and the remaining useful life
of components.

Table 2
Input Parameters for Testing Various Scenarios
Testing | Tempera- Pres- | Vibra-
Scenario | ture (°C) sure tion | Data source
(bar) | (m/s?)

. OREDA
Scenario 1 database =+
(nominal |80-100 5-8 0.5-1.5 .
mode) operational

data
Scenario 2 E;n;:lated
(increased [100-120 (812 |1.5-3.0 | g
egradation
loads) ...
conditions
Artificial
Scenario 3 data
(data 90-110 6-9 1.0-2.0 |limitation
deficiency) (only partial
records)

Evaluation of Accuracy, Precision, Recall,
and F1-Score metrics for various methods of
diagnosing the technical condition of the SPP

To quantitatively assess the effectiveness of the
developed SPP diagnostics approach, mathematical
metrics traditionally used in technical condition
diagnostics tasks were applied: Accuracy;
Precision; Recall; F1-Score. These indicators are
standard in the fields of machine learning and data
mining, including for evaluating the quality of
binary classification, and allow for objective
comparison of different configurations of diagnostic

systems.
TP+TN

TP+ TN + FP + FN’

Accuracy =

TP

P . . — .
recision —TP T FP

TP

TP+ FN’
Precision - Recall

Recall =

F1=2

. Precision + Recall

The evaluation of metrics was carried out to
identify the difference between standard CBR
solutions and adjusted results based on probabilistic
failure  analysis. Dynamic adjustment of
probabilities based on the obtained data was used
during testing. To assess the effectiveness of the
adaptive mechanism, two types of testing were
conducted: CBR without adaptation — failure
diagnostics was performed solely based on

Table 3
Comparison of diagnostic metrics

Diagnostic|Accuracy,|Precision,| Recall, sfolr_e MAE

method % % % % > |(hours)
CBR
without  [78.5 75.2 80.1 (775 |[124
adaptation
CBR withles 3 131|876 853 |72
adaptation
Traditional;, ¢ 70.3 755 |72.8 |15.6
method

The analysis of diagnostic metrics in Table 3
confirms that adapting the CBR method using
probabilistic models (Bayesian networks and
Markov chains) significantly improves diagnostic
quality. Improvements are observed across all
metrics: classification accuracy increases by more
than 6 percentage points compared to the baseline
CBR, and the prediction error for remaining useful
life is reduced by almost half. Importantly, a
balanced ratio between recall and precision is
achieved, as reflected in the high Fl-score value
(85.3%). Traditional methods, which do not use
case-based or probabilistic analysis, show poorer
performance both in classification accuracy and in
predictive capability. This confirms the necessity of
transitioning to integrated diagnostic solutions
under high uncertainty and complexity conditions
of SPPs. Adapting CBR solutions allows for
improved diagnostic accuracy and reduced average
failure prediction error.

Figure 1 illustrates how diagnostic metrics
improve with the addition of probabilistic methods
and simulation modeling.

Figure 1 shows a comparison of diagnostic
accuracy across various scenarios for three
methods: CBR — approximately 0.76; CBR +
Probabilistic Models — approximately 0.85;
Integrated Approach — approximately 0.90. Pure
CBR demonstrates the lowest accuracy (below 0.8),
indicating its limited ability to account for
probabilistic failure dependencies. The addition of
probabilistic models (Bayesian networks, Markov
processes) improves diagnostic performance by
around 10%, confirming the effectiveness of
method combination. The Integrated Approach
(CBR + probabilistic models + simulation methods)
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achieves the highest accuracy (above 0.9),
indicating a synergistic effect from the
comprehensive use of methodologies. The metric
diagram (Figure 2) further confirms that the
proposed integrated approach to diagnosing SPP
significantly improves accuracy compared to
standalone methods.
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Fig. 1. Comparison of fault diagnosis accuracy metrics
across different scenarios
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Fig. 2. Diagnostic Accuracy Metrics Chart

Based on Figure 2, the following observations
can be made. The CBR method shows the lowest
values across all metrics (~0.78), indicating
insufficient accuracy and completeness of diagnosis
when using a case-based approach alone. CBR +
Probabilistic Models (adding probabilistic models)
increases all metric values to approximately 0.82—
0.84. This indicates a more balanced diagnostic
performance that accounts for probabilistic failure
dependencies. The  Integrated  Approach
demonstrates the highest results — all metrics exceed

0.88, confirming its effectiveness. It is evident that
Precision, Recall, and Fl-score are nearly at the
same level, indicating a well-balanced diagnostic
system. The integration of probabilistic methods
with CBR significantly improves fault diagnosis
accuracy. Using a comprehensive approach
mitigates the limitations of individual methods,
resulting in a more reliable diagnosis.The more
complex the method (CBR — CBR + Probabilistic
Models — Integrated Approach), the higher the
diagnostic quality. The diagnostic accuracy metric
charts for SPPs (Figures 1 and 2) illustrate how well
the model identifies both faults and healthy states.

Figure 3 shows how adaptation affects fault
diagnosis accuracy over time. Different SPP
subsystems respond differently to adaptation (which
is important for analyzing failure probabilities).
This is due to cascading effects during SPP
operation. A decline in diagnostic accuracy in one
system can influence others.
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/ M .~
,/ 3 - Precision with adaptation S
/ (|
/ 8- Recall with adaptation

07094

2- Fi-score with adaptation
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Number of diagnostic cycles (component groups)

Fig. 3. Diagnostic Accuracy Dynamics with
CBR Adaptation

Figure 3 illustrates the dynamics of key
diagnostic metrics (Accuracy, Precision, Recall, F1-
score) using two approaches: CBR without
adaptation; CBR with adaptation (incorporating
probabilistic failure prediction). The number of
diagnostic cycles refers to the number of
consecutive diagnostic checks of SPP equipment.
Each fault diagnosis cycle includes the following
steps: data collection (temperature, pressure,
vibration, etc.); analysis for deviations from normal
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operating conditions; identification of potential
failures using CBR (without and with adaptation);
decision adjustment based on accumulated
experience and probabilistic failure prediction. All
metrics are higher with adaptation than without,
confirming the effectiveness of the adaptive
mechanism: Accuracy in the adaptive CBR remains
consistently about 5% higher compared to the
baseline version; Precision, Recall, and F1-score
also show a positive shift of 5-6%, indicating
improved fault classification and reduced false
positives; the dynamics of metrics without
adaptation are less stable, in contrast to the adaptive
approach, which demonstrates a smoother and more
predictable curve. The adaptive CBR based on
probabilistic forecasting enhances the accuracy of
diagnosing SPP. The stability of the metrics
indicates a better match between diagnostic
decisions and actual failures. The use of the
adaptive mechanism is recommended to improve
diagnostic reliability and reduce forecasting errors.

To assess the stability of SPP equipment fault
diagnosis methods under different data splits, cross-
validation is used. To quantitatively assess the
stability of wvarious components within the
diagnostic system, a five-fold cross-validation (CV)
was conducted, covering cases from three
operational scenarios: nominal mode, increased
load, and data deficiency. The table presents the
average accuracy (Accuracy) and corresponding
standard deviation values for each of the three
approaches - basic CBR, probabilistic models, and
the integrated solution.

Table 4
Five-Fold Cross-Validation Results

Mean accuracy Standard
Method on CV (%) | deviation (%)
CBR 73.5 3.0
Probabilistic 791 28
networks
Integrated
method 86.4 2.2

Analysis of Table 4 shows that the integrated
approach delivers the highest stability and accuracy
among all three configurations: the average
Accuracy reached 86.4% with a minimum standard
deviation of 2.2%, indicating strong reproducibility
of results. Probabilistic models performed slightly
worse, achieving 79.1% Accuracy with a standard
deviation of 2.8%. The basic CBR mechanism was
the least robust, showing an average accuracy of
73.5% and the highest variability (¢ = 3.0%). These
results confirm that the combined use of CBR,
probabilistic inference, and simulation provides the

best generalization and robustness across different
operational conditions. The difference in accuracy
between the integrated method and each of the
standalone components ranges from 7 to 13
percentage points, quantifying the synergy achieved
by combining these methods. Moreover, the
reduction in result dispersion observed in the
integrated method compared to CBR confirms that
incorporating  probabilistic ~ forecasting and
simulation not only improves diagnostic accuracy
but also enhances the system's resilience to input
variability.

To further analyze how different methods
perform under cross-validation, an accuracy
distribution chart was created. Figure 4 presents the
cross-validation results for various fault diagnosis
methods.

%

—~ =y =23
> S by

Average accuracy on cross-validation (2%)

-
S

65 -

(BR Bayes Integrated

Fig. 4. Cross-validation results for different diagnostic
methods

Comparison of methods based on Figure 4:
CBR shows the lowest result (=74%) and the
highest variability; Bayes (Bayesian method) yields
intermediate performance (confidence interval
~79%) but with greater error margin than the
Integrated method; Integrated approach achieves
the highest accuracy (=86%) with the lowest error.
Thus, the integrated approach outperforms both
CBR and Bayes in terms of accuracy and stability.
The Bayesian method demonstrates solid
performance, though with a wider error margin.
CBR has the lowest accuracy and the highest spread
of values.

Cross-validation confirms the reliability of the
integrated method. It consistently yields stable
results with the smallest standard deviation (2.2%).
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The higher variability in CBR without adaptation
indicates the method's dependence on the structure
of the case base. The use of probabilistic methods
reduces error dispersion and enhances diagnostic
reliability.

An analysis of the Precision, Recall, F1-score,
and Accuracy metrics shows that adaptive CBR
methods incorporating probabilistic forecasting
reduce diagnostic errors by accounting for the
probability distribution of potential failures and
adapting to new cases. Compared to classical CBR
and Bayesian approaches, the integrated method
demonstrates the best balance between precision
and recall, as also reflected by the high F1-score.
This makes it more reliable for predicting the
technical condition of marine power plants,
especially under conditions of incomplete
information and varying operational factors.

In addition to the standard metrics (Accuracy,
Precision, Recall, Fl-score) used for quantitative
evaluation, additional diagnostic indicators adapted
for the specifics of complex technical systems were
considered. These indicators provide a more
nuanced evaluation by accounting for the severity
of different types of errors, the consequences of
failures, and the robustness of the model under
varying operational modes. While the main part of
the study is based on classic binary classification
metrics (Accuracy, Precision, Recall, F1-score), in
the context of diagnostics and failure prediction in
CTS, it is important to consider not only statistical
indicators but also the operational significance of
different error types. To address this, modified
formulas for evaluating diagnostic and prognostic
quality were proposed, tailored to the specific needs
of CTS and developed within the scope of this
research. The modified diagnostic metrics reflect
such aspects as the severity of equipment failures,
the risk of false negatives, and the resilience of the
diagnostic system under varying system operation
scenarios.

1. Weighted Accuracy (WAcc). This metric
takes into account the varying importance of
correctly and incorrectly classified cases:

WA,
wTP : TP + (I.)TN : TN

:(I.)TP'TP+(UTN'TN+(I)FP'FP+O)FN'FN,

where wrp, wry, Wrp, Wpy are weights reflecting
the relative importance of each classification
outcome type.

For example, wgy > wpp, if a missed failure
is more critical than a false alarm.

2. Degradation-Weighted F1 Score (Weighted
F1). A modified F1 score is proposed that accounts
for the criticality of the monitored component (e.g.,
a generator or gas turbine engine):

F1, =2. LR
YT P+R

where P - Precision: the proportion of true positives
among all positive predictions;
R - Recall: the proportion of detected failures

among all actual failures;

wg - weight coefficient reflecting the
degradation importance of the component for which
the F1 score is calculated.It is used to increase the
impact of failures in critical nodes (e.g., generator
or main engine).

3. Risk-Weighted Recall (Recall R):

21 TP
it (TP; + FN;)

Recallp, =

where r; is the risk coefficient of failure for
equipment i

4. Cost-Sensitive Precision. False positive
alarms (Type I errors) may lead to equipment
shutdowns, financial losses, and decreased trust in

the diagnostic system:

TP

Precision; = TP+ cpp - FP'
where crp is the cost of a single false positive (can
be defined by expert assessment).

5. Diagnostic Stability Index (DSI). A metric
that reflects the model’s sensitivity to changes in
operating conditions:

g,
DSI = i
F

1

where F; is the average F1 score across different
scenarios (e.g., normal mode, overload, data
shortage)

op, is the standard deviation of F1 scores
between scenarios.

The closer the DSI is to 1, the more stable the
diagnostic model is.

Table 5 demonstrates not only the quantitative
superiority of the integrated diagnostic system
(which includes CBR, probabilistic models, and
simulation modeling) over the simplified
configuration, but also qualitatively different
improvements when using modified metrics. In
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particular, while the standard F1 score increases by
7.8 percentage points (from 77.5% to 85.3%), the
modified F1-W - which accounts for the criticality
of diagnosed components - shows a 14.9 percentage
point increase (from 74.2% to 89.1%).

Table 5

Diagnostic Performance Evaluation Results Using
Basic and Extended Metrics

. Without With
Metric adaptation | adaptation Comment
Fl  score Standard
(%) 77.5 85.3 measure of]
balance
Accounts  for
F1-W the importance
(weighted) |72 89.1 of failure in the
SPP
Precision |75.2 83.1 Bamg accuracy
metric
Takes into
Precision- account the
C (cost) 69.5 81.8 penalty for
false alarms
Basic
Recall (%) |80.1 87.6 completeness
metric
Focus on
giescl?)ll—R 76.0 91.0 preventing
critical failures
Accuracy Overg Il .
78.5 85.3 classification
(%)
accuracy
Priority on
WAce a6 4 88.0 significant
(weighted)
errors
Diagnostic
DSI 0.932 0.983 stability across
scenarios

This indicates that the adapted system is not
just more effective "on average", but also delivers
higher quality performance in scenarios where
failures have the most severe consequences. A
similar pattern is observed when comparing Recall
and Recall-R. While the absolute increase in Recall
is 7.5 p.p., the risk-weighted Recall-R increases by
15 p.p. This suggests that the adapted model is better
at predicting those failures that are most dangerous
in operational terms - i.e., it contributes not just to
classification completeness, but to reducing the
likelihood of critical incidents. The metric
Precision-C, which accounts for the relative cost of
false alarms, shows a particularly significant effect:
it increases by 12.3 p.p. (from 69.5% to 81.8%),
notably surpassing the growth in classical Precision
(7.9 p.p.)- This means that the adapted system not

only improves accuracy, but also reduces the
number of false diagnostic triggers, which could
otherwise lead to unjustified equipment shutdowns
or inefficient technical interventions. Values of the
Diagnostic Stability Index (DSI) also confirm the
advantage of the integrated approach. The increase
in DSI from 0.932 to 0.983 indicates that the system
maintains stable F1 score performance across
various operational scenarios (normal conditions,
overload, and data shortage), without losing
reliability under non-standard conditions. This is
especially important for diagnostic systems (CTS)
operating under variable loads, unstable
information, and limited resources. An analysis of
Accuracy and WAcc values shows that while
general accuracy grows by 6.8 p.p., the weighted
accuracy - which considers the consequences of
errors - increases by 11.6 p.p. This means that
qualitative changes occurred not just in the number
of correct predictions, but in their significance:
improvements occurred where errors would be most
costly. Thus, using modified metrics makes it
possible to identify effects that remain hidden when
evaluating only with classical indicators. This
confirms that the proposed diagnostic system not
only increases numerical accuracy values, but
becomes genuinely more reliable — prioritizing the
identification of the most critical situations and
minimizing operational risks.

Figure 5 presents a chart comparing the
modified metrics between the configurations
without adaptation and with adaptation. It
demonstrates: a significant improvement in F1-W,
Recall-R, and WAcc in the adapted system; a
particularly noticeable increase in DSI, reflecting
enhanced diagnostic stability; an overall gain not
just in accuracy, but in metrics that account for risk,
cost, and reliability.

Figure 5 visualizes the quantitative differences
between diagnostic system configurations and
illustrates the structural redistribution of fault
diagnosis quality when transitioning from a non-
adaptive architecture to an integrated adaptive one.
Notably, the most significant improvements are
observed in metrics that account for risks, priorities,
and the cost of errors. For instance, the modified
recall (Recall-R) in the adapted system reaches
91.0% compared to 76.0% in the baseline, while the
weighted F1 score (F1-W) improves from 74.2% to
89.1%. This highlights that the integration of CBR,
probabilistic models, and simulation modeling
enables the system to handle the most critical
failures more effectively—not merely to detect
frequent events. The Precision-C metric, which
reflects sensitivity to the cost of false alarms,
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increased from 69.5% to 81.8%, i.e., by almost 12.3
percentage points, indicating a more “economical”
system behavior in operational contexts. In other
words, it's not just fewer errors -it’s fewer costly
errors. This is crucial in marine and energy systems,
where a false alarm can lead to unnecessary
expenses and disruption of normal operations.
Equally telling is the behavior of the DSI: while its
increase from 0.932 to 0.983 may seem modest in
absolute terms, it signifies that the standard
deviation of the Fl-score across scenarios has
nearly halved. This means the system behaves
predictably and reliably under various operational
conditions, including overload scenarios and
incomplete data. Thus, the figure illustrates a
qualitative shift in diagnostics -not just a rise in
statistical metrics, but an enhancement of the
system’s meaningful behavior, particularly under
risk, limited information, and high cost of error. The
numerical gains across key modified metrics make
this effect both compelling and justified. The
modified metrics allow the system to: account for
the danger of missed failures (Recall-R, F1-W);
reflect operational costs of false positives
(Precision-C, WAcc); track variability in model
behavior under real-world operating conditions
(DSI). This is especially important when deploying
intelligent diagnostics in critical systems, where the
consequences of errors may be highly asymmetric.

100

80
60
40
2

0

F1/F1-W  Precision/ Precision-C Recall / Recall-R

Accuracy / WAcc DSI

Fig. 5. Comparison of Modified Diagnostic Metrics in
the Integrated System With and Without Adaptation

This study presents extensive experimental
testing of an integrated approach to diagnosing
complex technical systems, combining CBR,
probabilistic methods (Bayesian networks and
Markov chains), and simulation modeling. A
multidimensional evaluation of effectiveness was

conducted using both classical metrics and specially
introduced indicators of risk and robustness. Multi-
scenario testing under three operating conditions
(normal, high load, and data limitation)
demonstrated that Accuracy increased from 78.5%
to 85.3%, Precision from 75.2% to 83.1%, Recall
from 80.1% to 87.6%, and F1 score from 77.5% to
85.3%. Moreover, fivefold cross-validation
(6 F1=2.2%) and a decrease in F1 score of no more
than 3 percentage points under artificially limited
data confirm the method’s high reproducibility and
robustness.

A comparative analysis with contemporary
studies underscores the uniqueness of our
experiment: Soliman [15] is limited to a review of
digital twins without CBR or classification metrics;
Jovanovi¢ [16] combines FTA and BN without
simulations or case-based mechanisms; Velasco
Gallego et al. [17] assess only RMSE/MAE without
considering recall and precision; Schultheis [18]
applies a hybrid CBR without probabilistic or
simulation components; Daya & Lazakis [19] use
DFTA, FMECA, and BBN without multi-scenario
testing; Neupane et al. [20] review ML approaches
without a hybrid implementation; Lv et al. [21]
study FDD models without comprehensive
integration or F1 evaluation; and Yan Li et al. [22]
are limited to MC simulations without CBR or
extended metrics. None of these studies combine all
three components or perform a multidimensional
effectiveness  evaluation,  highlighting  the
completeness and novelty of our validation.

A key outcome is the implementation and
validation of modified metrics: weighted Accuracy
(WAcc), FI-W (accounting for the degradation
importance of nodes), Recall-R (risk-weighted
recall), Precision-C (reflecting the cost of false
alarms), and the DSI. These metrics revealed that
Recall-R  reaches 91.0% and DSI 0.983,
demonstrating the model’s capability to accurately
identify critical failures and maintain diagnostic
quality under varying operational conditions. This
multi-faceted set of complementary indicators
enables a comprehensive assessment of operational
risks, error costs, and system stability—something
unachievable with standard metrics alone. The
practical significance lies in the method’s readiness
for integration into onboard SCADA/PMS of
marine power plants and terrestrial power stations,
facilitating a transition to intelligent, predictive
maintenance, reducing unplanned downtime and
costs, and improving operational reliability. Future
development prospects, beyond the scope of the
current experimental  validation, include
implementing online monitoring with continuous



BICHUK CXIOHOYKPAIHCBKOIO HALIOHAMBHOIO YHIBEPCUTETY imeni Bonogumupa Jans Ne 5 (291) 2025 15

real-time adaptation of CBR and probabilistic
models, expanding the case base using data from
diverse technical assets, and integrating deep neural
networks for automatic preprocessing of sensor
signals and feature extraction. In summary, the
conducted multi-scenario experimental validation
and multidimensional performance evaluation
confirm the high effectiveness and robustness of the
integrated diagnostic approach for complex
technical systems, justifying its practical
applicability and methodological novelty in the
context of intelligent control system assessment.

Conclusions

The effectiveness of the experimentally
validated integrated approach to diagnosing
complex technical systems -combining CBR,
probabilistic methods (Bayesian networks and
Markov chains), and simulation modeling - has been
confirmed across three fundamentally different
operational modes (nominal, high load, and limited
data) and is reproducible based on five-fold cross-
validation, with the standard deviation of the F1
score amounting to 2.2%. Accuracy increased from
78.5% to 85.3%, Precision from 75.2% to 83.1%,
Recall from 80.1% to 87.6%, and F1 score from
77.5% to 85.3%. Notably, under artificially limited
data conditions, the drop in F1 score did not exceed
three percentage points, indicating high robustness
of the method. The key scientific novelty lies not
only in the experimental validation of the synergy
between the three methods but also in the
development of a system of modified diagnostic
metrics tailored to the operational conditions of

CTS. In addition to the classical indicators
(Accuracy, Precision, Recall, F1 score), the
following modified metrics were introduced:

weighted Accuracy (WAcc), F1-W (accounting for
node degradation importance), Recall R (weighted
by failure risk), Precision-C (considering the cost of
false alarms), and the DSI, all reflecting operational
risks, the economic impact of errors, and system
stability under varying conditions. These metrics
revealed system properties not captured by standard
indicators: Recall-R reached 91.0%, and DSI was
0.983, demonstrating the model's ability to
accurately detect critical failures and maintain high
reliability under unstable conditions. The practical
significance of the approach lies in its potential for
integration into onboard monitoring systems of ship
power plants and SCADA/PMS systems of land-
based power stations, facilitating the shift from
scheduled maintenance to intelligent, predictive
control of complex technical systems, reducing
unplanned downtimes, lowering costs, and
increasing overall operational reliability. The

proposed metrics can be used to assess equipment
failure risks in CTS and support real-time decision-
making, considering not only the presence of faults
but also the potential consequences of diagnostic
errors in the context of operational criticality.
Although this study focuses on experimental
verification, future development prospects include
implementing continuous real-time adaptation of
CBR and probabilistic models, expanding the case
base with data from various types of technical
systems, and integrating deep learning methods for
automatic preprocessing of sensor signals and
feature  extraction.Thus, the comprehensive
experimental verification and the developed system
of modified metrics - which enable a formalized
assessment of the effectiveness of the integrated
diagnostic approach with regard to operational
context, robustness, and the impact of errors—
confirm its capability to ensure a comprehensive
improvement in the quality and reliability of
diagnosis and forecasting in complex technical
systems. All conclusions are based on the results of
a multi-scenario experiment covering three
operational modes and are supported by statistically
stable cross-validation data, ensuring high
reproducibility and confidence in the findings. The
experimental validation of the synergy among CBR,
probabilistic models, and simulation modeling
demonstrates for the first time that their
combination provides a significant advantage over
using each component individually—representing
the key scientific contribution of this work.
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Buuy:xaniun B. B., Buuy:xanin O. B.
InTerpoBanmii miaxigx Q0 OIArHOCTHMKHM CKJIAJTHUX
TeXHIYHHUX CHCTEM: eKCIlepUMEeHTAaIbHA BaJligauis Ta
O0araTroBuMipHa oniHKa e()eKTHBHOCTI

YV yin  cmammi  npedcmaeneno  cebiuny
EeKCNepUMEHMANbHY sepugirayiio IHMe2poBano2o
nioxody 00 Odiacnocmuxu mexuiynozo cmany (TC)
cxknaonux mexuiunux cucmem (CTC) na npuxiadi

CYOHOBUX eHepeemuuHux YCMAaHOBOK (CEY).
3anpononosana  memooonocii  NOEOHyE  N02IKY
npeyedenmie (Case Based Reasoning — CBR),
tLmMogipHicHe NPOSHO3Y68AHHS 3a 00nOM02010

Oau€eci8CHKUX MEPENC | MAPKOBCLKUX IAHYIOZIB, A MAKOHC
iMimayiune MOOeNO8AHHSA CcyeHapiie Oezpadayii ma
KAcKaoHux 8iomos. Tecmysans npogooUiIoCs 3a mpbomd
cyeHapiamu: HOPMATbHUL PEHCUM eKCyamayii, pexicum
niOBUYEHO20 — HABAHMAdICEHH — MaA  cyeHapitl 3
06MedCceHo0  0OCMYNHICMIO  OGHUX, WO O003601UN0
8CEOIUHO  OYIHUMU AOANMUBHICMb Al2OPpUMMIE | ix
CMItIKiCmb 00 3MIHHUX excnyamayiunux gpaxkmopis. /s
KinbKicHOl OYIHKU akocmi diacHocmuxu
BUKOPUCIIOBYBANUCL — KIACUYHI — MEMpPuKu
xknacugixayii (Accuracy, Precision, Recall i FI score), a
MAKONC HOBOBEEOCH] POWUPEHT NOKAZHUKU: 38AJICEHA
mounicmo  (WAcc), Fl-oyinka 3  ypaxysanusm
Kpumuynocmi 8iomoe komnonwenmie (FI1W), nosnoma 3i
36a0iCY8aHHAM HA puzuk 6iomosu (RecallR), ckopueosana
MOYHICMb 3 YPAXYBAHHAM — 8APMOCMI  NOMUTKOBUX
mpueoe  (PrecisionC) ma Inoexc cmabinbhocmi
diaenocmuxu (DSI). Pesynomamu Oacamocyenaproco
EKCNEepUMEHmY NOKA3anu cmadiibHe NOKPAUWjeHHs: 8CIX
OCHOBHUX noKazHukie: Accuracy 3pocia 3 78.5% oo
85.3%, Precision —3 75.2% 0o 83.1%, Recall — 3 80.1%
00 87.6%, F1 score—377.5% 00 85.3%, RecallR oocsena
91.0%, a DSI cmanosus 0.983. II’amuxpamua Kpoc-
sanioayis noxasana cmaunoapmue gioxunenus F1 score

oinapmnoi

Ha pieni 2.2%, wo niomeepoiicye 8i0mseoprosanicms i
HaoIuHicmb 3anpoOnoOHOBAH020 Memooy onsl
eKCNepUMEHMANbHO20 — MECMYSAHHA  IHMe2POBAH020
nioxody oo odiaenocmuxu CTC. Peanizayis yuxiiunol
npoyedypu "imimayis — timosiprocmi — aoanmayisi CBR"
3HAYHO 3MEHWUNA KITbKICMb NOMUTKOBUX MPUEo2 ma
nponywjenux KpumuyHux 6iomog obnaonanna CEY.
Ipakmuuna  3nauywicms — nioxody — noasieae  y
moxcnusocmi toeo inmeepayii 8 SCADA/PMS-cucmemu
mopcokux CTC ma HazeMHUX enepeemuyHux cmauyi,
wo cnpusmume nepexo0y 00  IHMELEKMyaibHO20
nPOSHO3HO20 06cy208y6aHHsL, 3MEHULEeHHIO
He3aNn1aHOBAHUX NPOCHOI8, 3HUJICEHHIO eumpam i
niosuugennio Haodinocmi obnaouanus. Ilepcnexmugu
ManuOymuix — 0OCHIOdNCEeHb — GKIIOYUAIOMb  NIOSUUJEHHS
aoanmueHocmi nioxooy, po3uwuperHs 6azu npeyeoeHmis
ma po3poOKy IHCMpYMenmie O a8MmoMamu308aHoOi
00pOOKU 2emepO2eHHUX OAHUX.

Knwouosi  cnosa:  npocnosna  diacnocmuxa,
batieciscori mepeaici, adanmayis CBR, mooenroganis
8I0MO8, PUBUK-OPICHMOBAHI MempPUKY, CMabitbHiCmb
OlazHOCMuUKU, IHMELEKNYaible 06CIY208Y6aHHs.
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