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This paper presents a comprehensive experimental 
validation of an integrated approach to the diagnosis of 
the technical condition (TC) of complex technical 
systems (CTS), using ship power plants (SPPs) as an 
example. The proposed methodology combines 
precedent-based logic (Case Based Reasoning – CBR), 
probabilistic forecasting using Bayesian networks and 
Markov chains, and simulation modeling of degradation 
scenarios and cascading failures. Testing was conducted 
under three scenarios: normal operating mode, high-
load mode, and a scenario with limited data availability, 
which enabled a thorough assessment of the algorithms' 
adaptability and resilience to changing operational 
factors. Classical binary classification metrics 
(Accuracy, Precision, Recall, and F1 score) were used for 
quantitative evaluation of diagnostic quality, along with 
newly introduced extended indicators: weighted 
accuracy (WAcc), F1 score accounting for the criticality 
of component failures (F1W), recall weighted by failure 
risk (RecallR), cost-adjusted precision for false alarms 
(PrecisionC), and the Diagnostic Stability Index (DSI). 
The results of the multi-scenario experiment showed a 
consistent improvement in all major indicators: 
Accuracy increased from 78.5% to 85.3%, Precision from 
75.2% to 83.1%, Recall from 80.1% to 87.6%, F1 score 
from 77.5% to 85.3%, RecallR reached 91.0%, and DSI 
was 0.983. Five-fold cross-validation yielded a standard 
deviation of F1 score at 2.2%, confirming the 
reproducibility and reliability of the proposed method for 
experimental testing of the integrated diagnostic 
approach for CTS. The implementation of a cyclic 
procedure "simulation, probabilities, CBR adaptation" 
significantly reduced the number of false alarms and 
missed critical failures in SPP equipment. The practical 
significance of the approach lies in its potential 

integration into SCADA/PMS systems of marine CTS and 
ground power stations, facilitating a shift to intelligent 
predictive maintenance, thereby reducing unplanned 
downtime, lowering costs, and enhancing equipment 
reliability. Future research prospects include increasing 
the adaptability of the approach, expanding the 
precedent base, and developing tools for automated 
processing of heterogeneous data. 
Keywords: predictive diagnostics, Bayesian networks, 
CBR adaptation, failure simulation modeling, risk-
oriented metrics, diagnostic stability, intelligent 
maintenance 

 
 
Introduction. In modern CTS, such as ship 

power plants SPP, issues of reliability and timely 
detection of equipment failures are critically 
important for ensuring operational safety and 
optimizing maintenance costs [1, 2]. Existing 
intelligent approaches to the diagnosis of the 
technical condition  of CTS traditionally rely either 
on CBR, which enables the use of accumulated 
experience from similar incidents, or on 
probabilistic models (Bayesian networks and 
Markov chains), which account for uncertainty and 
the dynamics of failure development in equipment 
components, or on simulation modeling, which 
generates degradation scenarios for components. 
However, the application of each of these methods 
individually is often insufficient for complex 
systems with cascading failure effects [3, 4].  

In response to these limitations, the field of 
hybrid and integrated models for diagnosis and 
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prognosis of the TS of complex systems, combining 
the advantages of different methodological blocks, 
has been actively developing in recent years. A 
systematic review of hybrid methods shows that a 
properly designed combination of CBR, 
probabilistic models, and simulation modeling can 
yield a synergistic effect, improving the accuracy of 
diagnostics and predictions of equipment TС [5]. 
Researchers Nikpour & Aamodt [6] introduced the 
BNCreek system, which combines CBR with a 
Bayesian network for fault diagnosis of CTS 
equipment under uncertainty. However, simulation 
modeling was not included, nor was a multi-
scenario experiment conducted, and the system's 
performance evaluation was limited to comparisons 
with expert assessments without formal metrics 
such as Precision/Recall/F1. Yang et al. [7] 
integrated CBR and Bayesian Networks for 
diagnosis and prognosis of the TС of complex 
systems, with validation based on real sensor data. 
However, their integration of CBR and Bayesian 
Networks did not involve Markov chains, and the 
simulation did not explore cascading equipment 
failures. A multidimensional evaluation of 
diagnostic and prognostic metrics was also not 
performed. Soleimani et al. [8] developed a 
combined HMM (Hidden Markov Model  a 
statistical model used for analyzing sequences 
where the system is described as having hidden 
states that transition with certain probabilities) for 
equipment failure detection and a Bayesian 
Network for root cause identification. This 
approach proved effective for fault diagnostics 
using an automotive system example. However, the 
authors did not use CBR, and their diagnostic 
system lacked a simulation module. The experiment 
covered only a single application domain. El-
Awady, Ahmed & Ponnambalam, Kumaraswamy 
[9] proposed Simulation Supported Bayesian 
Networks (SSBN) and Markov Chain Simulation 
Supported BNs (MCSSBN) for analyzing 
equipment failures in complex networks through 
simulation and probabilistic analysis. SSBN aims to 
improve the accuracy of probabilistic models 
through more realistic and variable scenarios. 
MCSSBN accounts for the dynamic changes in 
equipment TS over time, which is particularly 
important for diagnosing and predicting equipment 
degradation. However, the authors did not include a 
CBR component in their development, did not 
conduct experimental validation of SSBN and 
MCSSBN for diagnosing equipment failures in 
complex technical systems under various 
emergency scenarios, and did not employ diverse 
diagnostic accuracy metrics. 

In their  review, Zhong et al. [10] examined the 
application of digital twins in predictive 
maintenance of CTS equipment, including systems 
used in shipbuilding. However, as a review article, 
it did not present experimental implementations of 
the integration of CBR, probabilistic models, and 
simulation modeling. A comprehensive review of 
Predictive Maintenance (PdM) methods for the 
maritime industry, including ML algorithms for data 
processing, diagnostics, and failure forecasting, was 
provided by Kalafatelis et al. [11]. A drawback of 
this theoretical review is the absence of a practical 
implementation of an integrated method. The 
authors also did not consider CBR or Markov 
simulations. Emre Özaydın et al. [12] used a 
Bayesian Network approach for analyzing 
equipment failures on ships. The resulting data were 
compared with historical data, with no focus on 
post-failure analysis. A CBR block was not used, 
and no failure prediction simulation was conducted. 
Michail Cheliotis et al. [13] proposed a framework 
for diagnosing equipment failures in CTS based on 
operational data and failure probabilities, supported 
by ML algorithms. Their development did not 
include a CBR database or simulation scenarios of 
CTS equipment failures. Diagnostic accuracy was 
assessed using only a single metric, and no multi-
scenario validation of failure diagnostic accuracy 
was performed. 

Despite the presence of these studies, there 
remains a lack of experimental verifications of 
hybrid approaches specifically applied to ship-
based CTS using multidimensional metrics 
(Accuracy, Precision, Recall, F1 score). Existing 
reviews either cover the general theory of 
hybridization or focus on individual technological 
components (digital twin, Bayesian networks), but 
do not provide a comprehensive analysis of the 
synergy of all three components within a single 
experimental case. 

Purpose and objectives of experimental 
testing 

The purpose of this article is to organize and 
conduct multi-scenario experimental testing of an 
integrated method for diagnostics and prognostics 
of ТС in complex systems, using the example of an 
SРР. The testing employs multidimensional quality 
metrics - Accuracy, Precision, Recall, and F1 Score 
- which enable: quantitative confirmation of the 
synergistic effect resulting from the integration of 
CBR, probabilistic models, and simulation 
modeling; analysis of the method’s robustness 
under various operational modes (normal mode, 
increased loads, incomplete data); development of 
practical recommendations for implementation in 
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diagnostics and prognostics systems of complex 
technical systems for various applications. 

Within the integrated approach to diagnostics 
and prognostics of ТC SРР technical systems, an 
adaptive mechanism for CBR decision correction is 
implemented. This mechanism combines three 
information sources: probabilistic forecasting 
(Bayesian networks and Markov chains) – for 
estimating current and future probabilities of 
component failures; Remaining Useful Life (RUL) 
prediction  based on statistical models 
(MAE/RMSE) that refine the expected time to 
failure; simulation modeling – for generating 
degradation and cascading failure scenarios, 
allowing CBR decisions to be adjusted by 
accounting for potential nonlinear interactions 
between system nodes. At each diagnostic cycle, the 
CBR core receives updated failure probability 
estimates and scenarios from the probabilistic 
models and the simulator, then dynamically 
recalculates feature weights and refines the 
selection of similar cases. This approach ensures 
more accurate and robust diagnostics, even under 
changing operational factors and incomplete data. 

The main testing objectives include: evaluating 
the impact of integrating the adaptive mechanism 
into the CBR diagnostic structure, which leverages 
probabilistic forecasting and RUL analysis; 
analyzing the influence of probabilistic methods 
(Bayesian networks, Markov processes) on the 
accuracy of technical state predictions and failure 
probabilities; determining the contribution of 
simulation modeling to the accuracy of equipment 
failure forecasting, including assessing how 
cascading effects influence prediction accuracy;  
comparing various method combinations and 
evaluating their effectiveness based on key failure 
diagnostics accuracy metrics. 

Real failure data is used for comparison. The 
testing is conducted on a simulation model of the 
SРР, which includes: historical failure data (from 
the OREDA – Offshore Reliability Data database 
[14]); simulated degradation scenarios of 
components, mimicking different operational 
modes; Bayesian networks accounting for 
probabilistic interrelations between component 
failures; Markov processes applied to predict failure 
probabilities over time; CBR diagnostic results - 
conclusions made by the system based on case 
analysis and decision adaptation; Adjustments 
based on RUL predictions and cascading failure 
effects (e.g., failure of one node increases the 
probability of failure in other equipment nodes); 
simulation failure data results from the simulation 
model, where failure of one SРР component can 

lead to failures in connected system nodes 
(cascading effects considered). Testing covers 
various operational scenarios, including: normal 
conditions, standard operating mode; accelerated 
wear, increased loads and harsh operational 
environments; emergency conditions, unexpected 
failures and stress impacts on the system. 

CBR with adaptation implies not merely using 
a case base, but dynamically adjusting decisions 
based on predicted RUL and cascading failure 
probabilities obtained from probabilistic models. To 
assess the quality of SРР equipment failure 
diagnostics, the following accuracy metrics are 
used: Precision – the proportion of correctly 
predicted failures among all predicted failures; 
Recall – the proportion of actual failures that were 
correctly predicted; F1 Score – the harmonic mean 
of precision and recall; Accuracy – the total number 
of correctly classified cases (both failures and non-
failures). 

The average prediction error of RUL is 
evaluated using: Mean Absolute Error (MAE) – 
average absolute error in RUL prediction; Root 
Mean Square Error (RMSE) – root mean square 
error, which accounts for large deviations. Analysis 
of false positives and false negatives includes: False 
Positive (FP) – incorrect diagnostics where the 
system wrongly identifies a healthy component as 
faulty; False Negative (FN) – missed failures where 
the system fails to predict a failure that actually 
occurs. A detailed analysis of FP and FN helps 
improve decision-making algorithms and minimize 
critical errors. True Positive (TP) – correct 
prediction of a failure that actually occurs; True 
Negative (TN) – correct prediction that no failure 
occurs and indeed none happens. 

Several operational testing scenarios were 
developed, differing in load levels, failure 
frequency, and operating conditions. This allows for 
an assessment of the integrated method’s robustness 
and its ability to function correctly under various 
operating modes. 

The diagnostic CBR module is based on a case 
base of 235 structured cases, which include 
descriptions of failures, operating conditions, 
degradation parameters, and the decisions made. 
The cases were developed with input from industry 
experts with at least 10 years of experience in 
EMCS operation and maintenance. Each case was 
assigned a feature vector, including values of 
temperature, pressure, vibration, operating time, 
and failure characteristics of SРР elements, 
components, and subsystems. The structure of the 
case base enables efficient similarity-based search 
using a feature similarity metric, where feature 
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weights are defined by expert methods and 
calibrated during preliminary testing. 

Test scenarios for the technical condition of 
the SРР  

To verify the effectiveness of the proposed 
integrated method for diagnosing and predicting 
failures of elements, components, and subsystems 
of the SРР, three main operational test scenarios 
were developed to simulate various working 
conditions of the system. These scenarios allow for 
an assessment of the method’s accuracy, robustness, 
and adaptability under real operating conditions. 

Scenario 1. Nominal Mode, in which the SРР 
operates under normal conditions with typical loads 
and expected operational parameters. The goal of 
testing the technical condition of the SРР in this 
scenario is to verify the baseline level of diagnostic 
and failure prediction accuracy, as well as to 
identify possible false positives and missed failures. 
A full set of diagnostic data is used in this scenario 
(temperature, pressure, vibration, power –Table 1), 
and the number of unexpected failures is minimal. 
Temperature is monitored in the main engine 
cylinders, oil, and cooling systems. Рressure – in 
hydraulic and fuel lines. Vibrations – on bearings 
and shaft lines. Рower – at the output of generator 
and power units. These parameters serve as input 
features for both the CBR and probabilistic models. 

 

Table 1  

Diagnostic Features of SРР Failures Used  

in the Integrated Model 

Parameter 
Source / 

Component 
Diagnostic 

Significance 

Temperature 
Engine 
cylinders, heat 
exchangers, oil 

Indicator of 
overheating, early 
wear 

Pressure 
Oil system, 
cooling system 

Leaks, blockages, 
valve malfunctions 

Vibration 
Shaft lines, 
bearings, 
turbines 

Mechanical 
defects, 
misalignment, 
wear 

Power 
Generator sets, 
main engines 

Indirect indicator 
of failure or 
efficiency loss 

 
Scenario 2. The operation of the SРР is carried 

out under increased load conditions, leading to 
accelerated degradation of key system equipment. 
The purpose of PPS testing is to assess the method’s 
ability to recognize changes in failure dynamics and 
adapt to changing operational conditions. A 
distinctive feature of this scenario is higher 
temperature, vibration, and load cycles; accelerated 

wear of mechanisms; and increased probability of 
failures. 

Scenario 3. Fault diagnosis under conditions of 
limited information about past incidents (e.g., 
incomplete system operation data). The purpose of 
SРР testing is to assess the effectiveness of 
simulation modeling and the adaptability of CBR in 
the absence of sufficient historical information. The 
distinctive feature of this scenario is the artificial 
exclusion of part of the case base data and the need 
to test the method’s robustness under limited input 
conditions. 

To evaluate the effectiveness of the proposed 
method, a simulation model of the SРР was 
developed. During testing, various failure scenarios 
were generated (normal conditions, accelerated 
wear, cascading failures); data from OREDA and 
accumulated CBR knowledge bases were used; and 
fault diagnostics were performed both with and 
without CBR solution adaptation. Each scenario 
includes: a set of input parameters (temperature, 
pressure, vibration, power, etc.); actual component 
failures recorded in the database; diagnostic 
methods used in the scenario (CBR, probabilistic 
models, simulation modeling); data sources for 
testing (OREDA, simulation models, limited data 
sets). Bayesian networks were constructed for each 
key piece of SРР equipment, taking into account 
known causal relationships between the 
equipment’s technical state parameters and failure 
probabilities. The average number of nodes in a 
network was 7, with the number of arcs ranging 
from 8 to 15 depending on the complexity of the 
SРР equipment. Prior failure probabilities were 
determined based on OREDA data and adjusted 
during the training phase based on simulation 
results. To model the temporal evolution of 
component states, discrete-time Markov chains with 
4–6 degradation states were used: "operational", 
"initial degradation", "moderate degradation", 
"critical condition", and "failure". Transition 
probabilities were calculated based on cumulative 
operational data and fitted using MAE and RMSE 
metrics on historical time series. Probability updates 
occurred at each diagnostic cycle based on the 
principle: "observation, recalculation, forecast". 

The fixation of input parameters for the tests is 
presented in Table 2. 

The data presented in Table 2 clearly capture 
the differences between the system's operational 
scenarios and highlight the factors influencing 
component failure diagnostics in SРР subsystems. 
Since the scenarios are based on real data from 
OREDA and simulation modeling, the testing 
methodology becomes more substantiated and 
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reproducible. The developed scenarios make it 
possible to verify the robustness of the SРР 
equipment failure diagnostics method under various 
operational conditions. 

Table 2  

Input Parameters for Testing Various Scenarios 

Testing 
Scenario 

Tempera-
ture (°C) 

Pres-
sure 
(bar) 

Vibra-
tion 

(m/s²) 
Data source 

Scenario 1 
(nominal 
mode) 

80–100 5–8 0.5–1.5 

OREDA 
database + 
operational 
data 

Scenario 2 
(increased 
loads) 

100–120 8–12 1.5–3.0 

Simulated 
high-
degradation 
conditions 

Scenario 3 
(data 
deficiency) 

90–110 6–9 1.0–2.0 

Artificial 
data 
limitation 
(only partial 
records) 

 
Evaluation of Accuracy, Precision, Recall, 

and F1-Score metrics for various methods of 
diagnosing the technical condition of the SРР 

To quantitatively assess the effectiveness of the 
developed SРР diagnostics approach, mathematical 
metrics traditionally used in technical condition 
diagnostics tasks were applied: Accuracy; 
Precision; Recall; F1-Score. These indicators are 
standard in the fields of machine learning and data 
mining, including for evaluating the quality of 
binary classification, and allow for objective 
comparison of different configurations of diagnostic 
systems. 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
; 

 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
; 

 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
; 

𝐹1 = 2 ∙
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∙ 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
 

 
The evaluation of metrics was carried out to 

identify the difference between standard CBR 
solutions and adjusted results based on probabilistic 
failure analysis. Dynamic adjustment of 
probabilities based on the obtained data was used 
during testing. To assess the effectiveness of the 
adaptive mechanism, two types of testing were 
conducted: CBR without adaptation – failure 
diagnostics was performed solely based on 

similarity to past cases, without the use of 
probabilistic methods; CBR with adaptation – 
diagnostics were adjusted using Bayesian networks 
and Markov models, enabling the consideration of 
cascading failure risks and the remaining useful life 
of components. 

Table 3  

Comparison of diagnostic metrics 

Diagnostic 
method 

Accuracy, 
% 

Precision, 
% 

Recall, 
% 

F1-
score, 

% 

MAE 
(hours) 

CBR 
without 
adaptation 

78.5 75.2 80.1 77.5 12.4 

CBR with 
adaptation 

85.3 83.1 87.6 85.3 7.2 

Traditional 
method 

72.8 70.3 75.5 72.8 15.6 

 
The analysis of diagnostic metrics in Table 3 

confirms that adapting the CBR method using 
probabilistic models (Bayesian networks and 
Markov chains) significantly improves diagnostic 
quality. Improvements are observed across all 
metrics: classification accuracy increases by more 
than 6 percentage points compared to the baseline 
CBR, and the prediction error for remaining useful 
life is reduced by almost half. Importantly, a 
balanced ratio between recall and precision is 
achieved, as reflected in the high F1-score value 
(85.3%). Traditional methods, which do not use 
case-based or probabilistic analysis, show poorer 
performance both in classification accuracy and in 
predictive capability. This confirms the necessity of 
transitioning to integrated diagnostic solutions 
under high uncertainty and complexity conditions 
of SРРs. Adapting CBR solutions allows for 
improved diagnostic accuracy and reduced average 
failure prediction error. 

Figure 1 illustrates how diagnostic metrics 
improve with the addition of probabilistic methods 
and simulation modeling. 

Figure 1 shows a comparison of diagnostic 
accuracy across various scenarios for three 
methods: CBR – approximately 0.76; CBR + 
Probabilistic Models – approximately 0.85; 
Integrated Approach – approximately 0.90. Pure 
CBR demonstrates the lowest accuracy (below 0.8), 
indicating its limited ability to account for 
probabilistic failure dependencies. The addition of 
probabilistic models (Bayesian networks, Markov 
processes) improves diagnostic performance by 
around 10%, confirming the effectiveness of 
method combination. The Integrated Approach 
(CBR + probabilistic models + simulation methods) 
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achieves the highest accuracy (above 0.9), 
indicating a synergistic effect from the 
comprehensive use of methodologies. The metric 
diagram (Figure 2) further confirms that the 
proposed integrated approach to diagnosing SРР 
significantly improves accuracy compared to 
standalone methods. 

 

 

Fig. 1. Comparison of fault diagnosis accuracy metrics 
across different scenarios 

 

Fig. 2. Diagnostic Accuracy Metrics Chart 

Based on Figure 2, the following observations 
can be made. The CBR method shows the lowest 
values across all metrics (~0.78), indicating 
insufficient accuracy and completeness of diagnosis 
when using a case-based approach alone. CBR + 
Probabilistic Models (adding probabilistic models) 
increases all metric values to approximately 0.82–
0.84. This indicates a more balanced diagnostic 
performance that accounts for probabilistic failure 
dependencies. The Integrated Approach 
demonstrates the highest results – all metrics exceed 

0.88, confirming its effectiveness. It is evident that 
Precision, Recall, and F1-score are nearly at the 
same level, indicating a well-balanced diagnostic 
system. The integration of probabilistic methods 
with CBR significantly improves fault diagnosis 
accuracy. Using a comprehensive approach 
mitigates the limitations of individual methods, 
resulting in a more reliable diagnosis.The more 
complex the method (CBR → CBR + Probabilistic 
Models → Integrated Approach), the higher the 
diagnostic quality. The diagnostic accuracy metric 
charts for SРРs (Figures 1 and 2) illustrate how well 
the model identifies both faults and healthy states. 

Figure 3 shows how adaptation affects fault 
diagnosis accuracy over time. Different SРР 
subsystems respond differently to adaptation (which 
is important for analyzing failure probabilities). 
This is due to cascading effects during SРР 
operation. A decline in diagnostic accuracy in one 
system can influence others. 

 

 

Fig. 3. Diagnostic Accuracy Dynamics with  
CBR Adaptation 

Figure 3 illustrates the dynamics of key 
diagnostic metrics (Accuracy, Precision, Recall, F1-
score) using two approaches: CBR without 
adaptation; CBR with adaptation (incorporating 
probabilistic failure prediction). The number of 
diagnostic cycles refers to the number of 
consecutive diagnostic checks of SРР equipment. 
Each fault diagnosis cycle includes the following 
steps: data collection (temperature, pressure, 
vibration, etc.); analysis for deviations from normal 
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operating conditions; identification of potential 
failures using CBR (without and with adaptation); 
decision adjustment based on accumulated 
experience and probabilistic failure prediction. All 
metrics are higher with adaptation than without, 
confirming the effectiveness of the adaptive 
mechanism: Accuracy in the adaptive CBR remains 
consistently about 5% higher compared to the 
baseline version; Precision, Recall, and F1-score 
also show a positive shift of 5–6%, indicating 
improved fault classification and reduced false 
positives; the dynamics of metrics without 
adaptation are less stable, in contrast to the adaptive 
approach, which demonstrates a smoother and more 
predictable curve. The adaptive CBR based on 
probabilistic forecasting enhances the accuracy of 
diagnosing SРР.  The stability of the metrics 
indicates a better match between diagnostic 
decisions and actual failures.  The use of the 
adaptive mechanism is recommended to improve 
diagnostic reliability and reduce forecasting errors.  

To assess the stability of SРР equipment fault 
diagnosis methods under different data splits, cross-
validation is used. To quantitatively assess the 
stability of various components within the 
diagnostic system, a five-fold cross-validation (CV) 
was conducted, covering cases from three 
operational scenarios: nominal mode, increased 
load, and data deficiency. The table presents the 
average accuracy (Accuracy) and corresponding 
standard deviation values for each of the three 
approaches - basic CBR, probabilistic models, and 
the integrated solution. 

Table 4 

Five-Fold Cross-Validation Results 

Method 
Mean accuracy 

on CV (%) 
Standard 

deviation (%) 
CBR 73.5 3.0 
Probabilistic 
networks 

79.1 2.8 

Integrated 
method 

86.4 2.2 

 
Analysis of Table 4 shows that the integrated 

approach delivers the highest stability and accuracy 
among all three configurations: the average 
Accuracy reached 86.4% with a minimum standard 
deviation of 2.2%, indicating strong reproducibility 
of results. Probabilistic models performed slightly 
worse, achieving 79.1% Accuracy with a standard 
deviation of 2.8%. The basic CBR mechanism was 
the least robust, showing an average accuracy of 
73.5% and the highest variability (σ = 3.0%). These 
results confirm that the combined use of CBR, 
probabilistic inference, and simulation provides the 

best generalization and robustness across different 
operational conditions. The difference in accuracy 
between the integrated method and each of the 
standalone components ranges from 7 to 13 
percentage points, quantifying the synergy achieved 
by combining these methods. Moreover, the 
reduction in result dispersion observed in the 
integrated method compared to CBR confirms that 
incorporating probabilistic forecasting and 
simulation not only improves diagnostic accuracy 
but also enhances the system's resilience to input 
variability. 

To further analyze how different methods 
perform under cross-validation, an accuracy 
distribution chart was created. Figure 4 presents the 
cross-validation results for various fault diagnosis 
methods. 

 

 

Fig. 4. Cross-validation results for different diagnostic 
methods 

Comparison of methods based on Figure 4: 
CBR shows the lowest result (≈74%) and the 
highest variability; Bayes (Bayesian method) yields 
intermediate performance (confidence interval 
≈79%) but with greater error margin than the 
Integrated method; Integrated approach achieves 
the highest accuracy (≈86%) with the lowest error. 
Thus, the integrated approach outperforms both 
CBR and Bayes in terms of accuracy and stability. 
The Bayesian method demonstrates solid 
performance, though with a wider error margin. 
CBR has the lowest accuracy and the highest spread 
of values. 

Cross-validation confirms the reliability of the 
integrated method. It consistently yields stable 
results with the smallest standard deviation (2.2%). 
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The higher variability in CBR without adaptation 
indicates the method's dependence on the structure 
of the case base. The use of probabilistic methods 
reduces error dispersion and enhances diagnostic 
reliability. 

An analysis of the Precision, Recall, F1-score, 
and Accuracy metrics shows that adaptive CBR 
methods incorporating probabilistic forecasting 
reduce diagnostic errors by accounting for the 
probability distribution of potential failures and 
adapting to new cases. Compared to classical CBR 
and Bayesian approaches, the integrated method 
demonstrates the best balance between precision 
and recall, as also reflected by the high F1-score. 
This makes it more reliable for predicting the 
technical condition of marine power plants, 
especially under conditions of incomplete 
information and varying operational factors. 

In addition to the standard metrics (Accuracy, 
Precision, Recall, F1-score) used for quantitative 
evaluation, additional diagnostic indicators adapted 
for the specifics of complex technical systems were 
considered. These indicators provide a more 
nuanced evaluation by accounting for the severity 
of different types of errors, the consequences of 
failures, and the robustness of the model under 
varying operational modes. While the main part of 
the study is based on classic binary classification 
metrics (Accuracy, Precision, Recall, F1-score), in 
the context of diagnostics and failure prediction in 
CTS, it is important to consider not only statistical 
indicators but also the operational significance of 
different error types. To address this, modified 
formulas for evaluating diagnostic and prognostic 
quality were proposed, tailored to the specific needs 
of CTS and developed within the scope of this 
research. The modified diagnostic metrics reflect 
such aspects as the severity of equipment failures, 
the risk of false negatives, and the resilience of the 
diagnostic system under varying system operation 
scenarios. 

1. Weighted Accuracy (WAcc). This metric 
takes into account the varying importance of 
correctly and incorrectly classified cases: 

 
𝑊𝐴

=
𝜔் ∙ 𝑇𝑃 + 𝜔்ே ∙ 𝑇𝑁

𝜔் ∙ 𝑇𝑃 + 𝜔்ே ∙ 𝑇𝑁 + 𝜔ி ∙ 𝐹𝑃 + 𝜔ிே ∙ 𝐹𝑁
, 

 
where 𝜔், 𝜔்ே , 𝜔ி, 𝜔ிே are weights reflecting 
the relative importance of each classification 
outcome type. 

For example, 𝜔ிே > 𝜔ி,   if a missed failure 
is more critical than a false alarm. 

2. Degradation-Weighted F1 Score (Weighted 
F1). A modified F1 score is proposed that accounts 
for the criticality of the monitored component (e.g., 
a generator or gas turbine engine): 

 

𝐹1ௐ = 2 ∙
𝑃 ∙ 𝑅

𝑃 + 𝑅
∙ 

 
where P - Precision: the proportion of true positives 
among all positive predictions; 

  R - Recall: the proportion of detected failures 
among all actual failures; 

 𝜔ௗ - weight coefficient reflecting the 
degradation importance of the component for which 
the F1 score is calculated.It is used to increase the 
impact of failures in critical nodes (e.g., generator 
or main engine).  

3. Risk-Weighted Recall (Recall R): 
 

𝑅𝑒𝑐𝑎𝑙𝑙ோ =
∑ 𝑟 ∙ 𝑇𝑃

∑ 𝑟 ∙ (𝑇𝑃 + 𝐹𝑁)
, 

 
where ri  is the risk coefficient of failure for 
equipment i 

4. Cost-Sensitive Precision. False positive 
alarms (Type I errors) may lead to equipment 
shutdowns, financial losses, and decreased trust in 
the diagnostic system: 

 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝑐ி ∙ 𝐹𝑃
, 

 
where cFP  is the cost of a single false positive (can 
be defined by expert assessment). 

5.  Diagnostic Stability Index (DSI). A metric 
that reflects the model’s sensitivity to changes in 
operating conditions: 

 

𝐷𝑆𝐼 = 1 −
𝜎ிభ

𝐹ଵ
ഥ

 

 
where 𝐹ଵ

ഥ    is the average F1 score across different 
scenarios (e.g., normal mode, overload, data 
shortage) 

𝜎ிభ
 is the standard deviation of F1 scores 

between scenarios. 
The closer the DSI is to 1, the more stable the 

diagnostic model is. 
Table 5 demonstrates not only the quantitative 

superiority of the integrated diagnostic system 
(which includes CBR, probabilistic models, and 
simulation modeling) over the simplified 
configuration, but also qualitatively different 
improvements when using modified metrics. In 
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particular, while the standard F1 score increases by 
7.8 percentage points (from 77.5% to 85.3%), the 
modified F1-W - which accounts for the criticality 
of diagnosed components - shows a 14.9 percentage 
point increase (from 74.2% to 89.1%). 

 

Table 5  

Diagnostic Performance Evaluation Results Using 
Basic and Extended Metrics 

Metric 
Without 

adaptation 
With 

adaptation 
Comment 

F1 score 
(%) 

77.5 85.3 
Standard 
measure of 
balance 

F1-W 
(weighted) 

74.2 89.1 

Accounts for 
the importance 
of failure in the 
SРР 

Precision 75.2 83.1 
Basic accuracy 
metric 

Precision-
C (cost) 

69.5 81.8 

Takes into 
account the 
penalty for 
false alarms 

Recall (%) 80.1 87.6 
Basic 
completeness 
metric 

Recall-R 
(risk) 

76.0 91.0 
Focus on 
preventing 
critical failures 

Accuracy 
(%) 

78.5 85.3 
Overall 
classification 
accuracy 

WAcc 
(weighted) 

76.4 88.0 
Priority on 
significant 
errors 

DSI 0.932 0.983 
Diagnostic 
stability across 
scenarios 

 
This indicates that the adapted system is not 

just more effective "on average", but also delivers 
higher quality performance in scenarios where 
failures have the most severe consequences. A 
similar pattern is observed when comparing Recall 
and Recall-R. While the absolute increase in Recall 
is 7.5 p.p., the risk-weighted Recall-R increases by 
15 p.p. This suggests that the adapted model is better 
at predicting those failures that are most dangerous 
in operational terms - i.e., it contributes not just to 
classification completeness, but to reducing the 
likelihood of critical incidents. The metric 
Precision-C, which accounts for the relative cost of 
false alarms, shows a particularly significant effect: 
it increases by 12.3 p.p. (from 69.5% to 81.8%), 
notably surpassing the growth in classical Precision 
(7.9 p.p.). This means that the adapted system not 

only improves accuracy, but also reduces the 
number of false diagnostic triggers, which could 
otherwise lead to unjustified equipment shutdowns 
or inefficient technical interventions. Values of the 
Diagnostic Stability Index (DSI) also confirm the 
advantage of the integrated approach. The increase 
in DSI from 0.932 to 0.983 indicates that the system 
maintains stable F1 score performance across 
various operational scenarios (normal conditions, 
overload, and data shortage), without losing 
reliability under non-standard conditions. This is 
especially important for diagnostic systems (CTS) 
operating under variable loads, unstable 
information, and limited resources. An analysis of 
Accuracy and WAcc values shows that while 
general accuracy grows by 6.8 p.p., the weighted 
accuracy - which considers the consequences of 
errors - increases by 11.6 p.p. This means that 
qualitative changes occurred not just in the number 
of correct predictions, but in their significance: 
improvements occurred where errors would be most 
costly. Thus, using modified metrics makes it 
possible to identify effects that remain hidden when 
evaluating only with classical indicators. This 
confirms that the proposed diagnostic system not 
only increases numerical accuracy values, but 
becomes genuinely more reliable — prioritizing the 
identification of the most critical situations and 
minimizing operational risks. 

Figure 5 presents a chart comparing the 
modified metrics between the configurations 
without adaptation and with adaptation. It 
demonstrates: a significant improvement in F1-W, 
Recall-R, and WAcc in the adapted system; a 
particularly noticeable increase in DSI, reflecting 
enhanced diagnostic stability; an overall gain not 
just in accuracy, but in metrics that account for risk, 
cost, and reliability. 

Figure 5 visualizes the quantitative differences 
between diagnostic system configurations and 
illustrates the structural redistribution of fault 
diagnosis quality when transitioning from a non-
adaptive architecture to an integrated adaptive one. 
Notably, the most significant improvements are 
observed in metrics that account for risks, priorities, 
and the cost of errors. For instance, the modified 
recall (Recall-R) in the adapted system reaches 
91.0% compared to 76.0% in the baseline, while the 
weighted F1 score (F1-W) improves from 74.2% to 
89.1%. This highlights that the integration of CBR, 
probabilistic models, and simulation modeling 
enables the system to handle the most critical 
failures more effectively—not merely to detect 
frequent events. The Precision-C metric, which 
reflects sensitivity to the cost of false alarms, 
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increased from 69.5% to 81.8%, i.e., by almost 12.3 
percentage points, indicating a more “economical” 
system behavior in operational contexts. In other 
words, it's not just fewer errors -it’s fewer costly 
errors. This is crucial in marine and energy systems, 
where a false alarm can lead to unnecessary 
expenses and disruption of normal operations. 
Equally telling is the behavior of the DSI: while its 
increase from 0.932 to 0.983 may seem modest in 
absolute terms, it signifies that the standard 
deviation of the F1-score across scenarios has 
nearly halved. This means the system behaves 
predictably and reliably under various operational 
conditions, including overload scenarios and 
incomplete data. Thus, the figure illustrates a 
qualitative shift in diagnostics -not just a rise in 
statistical metrics, but an enhancement of the 
system’s meaningful behavior, particularly under 
risk, limited information, and high cost of error. The 
numerical gains across key modified metrics make 
this effect both compelling and justified. The 
modified metrics allow the system to: account for 
the danger of missed failures (Recall-R, F1-W); 
reflect operational costs of false positives 
(Precision-C, WAcc); track variability in model 
behavior under real-world operating conditions 
(DSI). This is especially important when deploying 
intelligent diagnostics in critical systems, where the 
consequences of errors may be highly asymmetric. 

 

 

Fig. 5. Comparison of Modified Diagnostic Metrics in 
the Integrated System With and Without Adaptation 

 
This study presents extensive experimental 

testing of an integrated approach to diagnosing 
complex technical systems, combining CBR, 
probabilistic methods (Bayesian networks and 
Markov chains), and simulation modeling. A 
multidimensional evaluation of effectiveness was 

conducted using both classical metrics and specially 
introduced indicators of risk and robustness. Multi-
scenario testing under three operating conditions 
(normal, high load, and data limitation) 
demonstrated that Accuracy increased from 78.5% 
to 85.3%, Precision from 75.2% to 83.1%, Recall 
from 80.1% to 87.6%, and F1 score from 77.5% to 
85.3%. Moreover, fivefold cross-validation 
(σௗF1ௗ=ௗ2.2%) and a decrease in F1 score of no more 
than 3 percentage points under artificially limited 
data confirm the method’s high reproducibility and 
robustness. 

A comparative analysis with contemporary 
studies underscores the uniqueness of our 
experiment: Soliman [15] is limited to a review of 
digital twins without CBR or classification metrics; 
Jovanović [16] combines FTA and BN without 
simulations or case-based mechanisms; Velasco 
Gallego et al. [17] assess only RMSE/MAE without 
considering recall and precision; Schultheis [18] 
applies a hybrid CBR without probabilistic or 
simulation components; Daya & Lazakis [19] use 
DFTA, FMECA, and BBN without multi-scenario 
testing; Neupane et al. [20] review ML approaches 
without a hybrid implementation; Lv et al. [21] 
study FDD models without comprehensive 
integration or F1 evaluation; and Yan Li et al. [22] 
are limited to MC simulations without CBR or 
extended metrics. None of these studies combine all 
three components or perform a multidimensional 
effectiveness evaluation, highlighting the 
completeness and novelty of our validation. 

A key outcome is the implementation and 
validation of modified metrics: weighted Accuracy 
(WAcc), F1-W (accounting for the degradation 
importance of nodes), Recall-R (risk-weighted 
recall), Precision-C (reflecting the cost of false 
alarms), and the DSI. These metrics revealed that 
Recall-R reaches 91.0% and DSI 0.983, 
demonstrating the model’s capability to accurately 
identify critical failures and maintain diagnostic 
quality under varying operational conditions. This 
multi-faceted set of complementary indicators 
enables a comprehensive assessment of operational 
risks, error costs, and system stability—something 
unachievable with standard metrics alone. The 
practical significance lies in the method’s readiness 
for integration into onboard SCADA/PMS of 
marine power plants and terrestrial power stations, 
facilitating a transition to intelligent, predictive 
maintenance, reducing unplanned downtime and 
costs, and improving operational reliability. Future 
development prospects, beyond the scope of the 
current experimental validation, include 
implementing online monitoring with continuous 
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real-time adaptation of CBR and probabilistic 
models, expanding the case base using data from 
diverse technical assets, and integrating deep neural 
networks for automatic preprocessing of sensor 
signals and feature extraction. In summary, the 
conducted multi-scenario experimental validation 
and multidimensional performance evaluation 
confirm the high effectiveness and robustness of the 
integrated diagnostic approach for complex 
technical systems, justifying its practical 
applicability and methodological novelty in the 
context of intelligent control system assessment. 

Conclusions 
The effectiveness of the experimentally 

validated integrated approach to diagnosing 
complex technical systems -combining CBR, 
probabilistic methods (Bayesian networks and 
Markov chains), and simulation modeling - has been 
confirmed across three fundamentally different 
operational modes (nominal, high load, and limited 
data) and is reproducible based on five-fold cross-
validation, with the standard deviation of the F1 
score amounting to 2.2%. Accuracy increased from 
78.5% to 85.3%, Precision from 75.2% to 83.1%, 
Recall from 80.1% to 87.6%, and F1 score from 
77.5% to 85.3%. Notably, under artificially limited 
data conditions, the drop in F1 score did not exceed 
three percentage points, indicating high robustness 
of the method. The key scientific novelty lies not 
only in the experimental validation of the synergy 
between the three methods but also in the 
development of a system of modified diagnostic 
metrics tailored to the operational conditions of 
CTS. In addition to the classical indicators 
(Accuracy, Precision, Recall, F1 score), the 
following modified metrics were introduced: 
weighted Accuracy (WAcc), F1-W (accounting for 
node degradation importance), Recall R (weighted 
by failure risk), Precision-C (considering the cost of 
false alarms), and the DSI, all reflecting operational 
risks, the economic impact of errors, and system 
stability under varying conditions. These metrics 
revealed system properties not captured by standard 
indicators: Recall-R reached 91.0%, and DSI was 
0.983, demonstrating the model's ability to 
accurately detect critical failures and maintain high 
reliability under unstable conditions. The practical 
significance of the approach lies in its potential for 
integration into onboard monitoring systems of ship 
power plants and SCADA/PMS systems of land-
based power stations, facilitating the shift from 
scheduled maintenance to intelligent, predictive 
control of complex technical systems, reducing 
unplanned downtimes, lowering costs, and 
increasing overall operational reliability. The 

proposed metrics can be used to assess equipment 
failure risks in CTS and support real-time decision-
making, considering not only the presence of faults 
but also the potential consequences of diagnostic 
errors in the context of operational criticality. 
Although this study focuses on experimental 
verification, future development prospects include 
implementing continuous real-time adaptation of 
CBR and probabilistic models, expanding the case 
base with data from various types of technical 
systems, and integrating deep learning methods for 
automatic preprocessing of sensor signals and 
feature extraction.Thus, the comprehensive 
experimental verification and the developed system 
of modified metrics - which enable a formalized 
assessment of the effectiveness of the integrated 
diagnostic approach with regard to operational 
context, robustness, and the impact of errors—
confirm its capability to ensure a comprehensive 
improvement in the quality and reliability of 
diagnosis and forecasting in complex technical 
systems. All conclusions are based on the results of 
a multi-scenario experiment covering three 
operational modes and are supported by statistically 
stable cross-validation data, ensuring high 
reproducibility and confidence in the findings. The 
experimental validation of the synergy among CBR, 
probabilistic models, and simulation modeling 
demonstrates for the first time that their 
combination provides a significant advantage over 
using each component individually—representing 
the key scientific contribution of this work. 
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ВичужанінௗВ.ௗВ., ВичужанінௗО.ௗВ. 
Інтегрований підхід до діагностики складних 
технічних систем: експериментальна валідація та 
багатовимірна оцінка ефективності 

У цій статті представлено всебічну 
експериментальну верифікацію інтегрованого 
підходу до діагностики технічного стану (ТС) 
складних технічних систем (СТС) на прикладі 
суднових енергетичних установок (СЕУ). 
Запропонована методологія поєднує логіку 
прецедентів (Case Based Reasoning – CBR), 
ймовірнісне прогнозування за допомогою 
байєсівських мереж і марковських ланцюгів, а також 
імітаційне моделювання сценаріїв деградації та 
каскадних відмов. Тестування проводилось за трьома 
сценаріями: нормальний режим експлуатації, режим 
підвищеного навантаження та сценарій з 
обмеженою доступністю даних, що дозволило 
всебічно оцінити адаптивність алгоритмів і їх 
стійкість до змінних експлуатаційних факторів. Для 
кількісної оцінки якості діагностики 
використовувались класичні метрики бінарної 
класифікації (Accuracy, Precision, Recall і F1 score), а 
також нововведені розширені показники: зважена 
точність (WAcc), F1-оцінка з урахуванням 
критичності відмов компонентів (F1W), повнота зі 
зважуванням на ризик відмови (RecallR), скоригована 
точність з урахуванням вартості помилкових 
тривог (PrecisionC) та Індекс стабільності 
діагностики (DSI). Результати багатосценарного 
експерименту показали стабільне покращення всіх 
основних показників: Accuracy зросла з 78.5% до 
85.3%, Precision – з 75.2% до 83.1%, Recall – з 80.1% 
до 87.6%, F1 score – з 77.5% до 85.3%, RecallR досягла 
91.0%, а DSI становив 0.983. П’ятикратна крос-
валідація показала стандартне відхилення F1 score 

на рівні 2.2%, що підтверджує відтворюваність і 
надійність запропонованого методу для 
експериментального тестування інтегрованого 
підходу до діагностики СТС. Реалізація циклічної 
процедури "імітація – ймовірності – адаптація CBR" 
значно зменшила кількість помилкових тривог та 
пропущених критичних відмов обладнання СЕУ. 
Практична значущість підходу полягає у 
можливості його інтеграції в SCADA/PMS-системи 
морських СТС та наземних енергетичних станцій, 
що сприятиме переходу до інтелектуального 
прогнозного обслуговування, зменшенню 
незапланованих простоїв, зниженню витрат і 
підвищенню надійності обладнання. Перспективи 
майбутніх досліджень включають підвищення 
адаптивності підходу, розширення бази прецедентів 
та розробку інструментів для автоматизованої 
обробки гетерогенних даних. 
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байєсівські мережі, адаптація CBR, моделювання 
відмов, ризик-орієнтовані метрики, стабільність 
діагностики, інтелектуальне обслуговування 
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