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Стаття досліджує питання використання 

інтелектуальних підходів до передбачення 

несправностей силового електрообладнання з 

використанням багаторівневих цифрових двійників, 

які інтегрують фізичне моделювання, технології 

машинного навчання та аналіз великих масивів даних 

з метою підвищення надійності функціонування 

енергетичних мереж. Дослідження спрямоване на 

розробку та експериментальне підтвердження 

комплексної цифрової моделі, що синтезує physics-

informed математичні рівняння з інтелектуальними 

алгоритмами глибинного навчання для досягнення 

вищої точності прогнозування залишкового 

експлуатаційного ресурсу та мінімізації кількості 

технічних несправностей у трансформаторному 

обладнанні та асинхронних електродвигунах. 

Методологічна основа дослідження базується на 

формуванні багатошарової архітектури цифрового 

двійника, що охоплює: сенсорний рівень агрегації 

даних, рівень фізичного моделювання 

електромагнітних, термічних та механічних явищ, 

аналітичний рівень застосування алгоритмів 

машинного навчання та рівень прийняття 

управлінських рішень із залученням елементів 

нечіткої логіки.  Здобуті наукові результати 

засвідчили, що застосування гібридної моделі може 

дозволити досягти зниження 

середньоквадратичного відхилення похибок RMSE до 

рівня 0,031, скорочення MAPE до 2,8 % та зростання 

коефіцієнта F1-score до 0,93, що значно переважає 

результативність класичних діагностичних 

методик. Встановлено визначальний вплив повноти 

сенсорної інформації та періодичності актуалізації 

моделей на прогностичну точність, а також 

підтверджено спроможність системи до 

автоматичної адаптації при варіації режимів 

навантаження. Створена архітектура 

продемонструвала резистентність до дефіциту 

даних і високий рівень узагальнювальної здатності 

(CV < 0,06). Прикладне значення дослідження 

виявляється у скороченні аварійних зупинок на 30-40 

%, оптимізації експлуатаційних витрат і 

трансформації до ризик-орієнтованої стратегії 

керування технічним станом обладнання. Напрями 

подальших наукових пошуків включають 

стандартизацію технологій цифрових двійників, 

розвиток методів explainable AI та впровадження 

базових систем кібербезпеки для промислових 

цифрових платформ нового покоління. 

Ключові слова: цифровий двійник, інтелектуальне 

прогнозування, машинне навчання, залишковий 

ресурс, технічна діагностика, енергетичне 

обладнання. 

 

 
Вступ. Поточна фаза еволюції 

енергетичного сектору визначається 

масштабною цифровою трансформацією та 

зміщенням парадигми від конвенційних методів 

експлуатації до інтелектуалізованих систем 

управління, що реалізують неперервний 

моніторинг, аналітичне оброблення та 

прогностичне моделювання технічного стану 

об'єктів енергетичної інфраструктури. 

Інтенсифікація навантажень на силове 

електротехнічне обладнання, ускладнення 

архітектури енергосистем і підвищення 

критеріїв надійності актуалізують потребу у 

впровадженні інноваційних методів технічної 

діагностики та обслуговування, що ґрунтуються 

на концепції цифрових двійників та 

інтелектуальних алгоритмах передбачення 
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аварійних станів [9]. Застосування віртуальних 

репрезентацій фізичних об'єктів уможливлює не 

тільки симуляцію фізико-технічних процесів, а 

й побудову предикативної моделі 

експлуатаційної поведінки у режимі реального 

часу через інтеграцію потоків сенсорних даних, 

моделей машинного навчання та аналітичних 

описів механізмів деградації. Практична 

значущість дослідження визначається 

необхідністю розроблення адаптивних 

самонавчальних систем, орієнтованих на 

забезпечення стабільності енергопостачання, 

редукцію позапланових простоїв та оптимізацію 

життєвого циклу електротехнічних активів. 

Аналіз наукових публікацій демонструє 

інтенсивне дослідження синергії технологій 

цифрових двійників та штучного інтелекту у 

контексті технічної діагностики й 

прогностичного обслуговування. Дослідження 

[2], [7] систематизують архітектурні концепції 

формування цифрових двійників енергетичних 

систем, де інтеграція моделей фізичних явищ з 

алгоритмами машинного навчання сприяє 

підвищенню достовірності прогнозування 

технічних аномалій. Дослідники [11], [13] 

обґрунтовують ефективність глибоких 

нейронних архітектур (CNN, LSTM, 

Autoencoder) для ідентифікації латентних 

дефектів та оцінювання залишкового 

експлуатаційного ресурсу (RUL). Праці [4] та [6] 

ілюструють результативність імплементації 

цифрових двійників у системи енергетичного 

менеджменту, тоді як [5] і [8] наголошують на 

доцільності гібридизації physics-informed 

підходів з методами пояснювального штучного 

інтелекту. Узагальнення наукового дискурсу 

підтверджує консолідовану тенденцію 

трансформації від реактивних стратегій 

технічного обслуговування до превентивно-

предикативних систем, здатних гарантувати 

операційну стійкість енергетичної 

інфраструктури. 

Метою статті є дослідження особливостей 

формування багаторівневої цифрової моделі 

силового електротехнічного обладнання, яка 

поєднує фізично-інформовані підходи та 

інтелектуальні алгоритми машинного навчання 

для підвищення точності прогнозування відмов 

і залишкового ресурсу 

Виклад основного матеріалу 

дослідження. Архітектура багаторівневого 

цифрового двійника силового 

електротехнічного обладнання розглядається як 

комплексна динамічна система, що поєднує 

фізичний об’єкт, віртуальну математичну 

модель і аналітичний інтелектуальний шар 

управління, між якими встановлюється 

двосторонній обмін даними в реальному часі, 

що забезпечує не лише імітацію, але й адаптивне 

прогнозування розвитку технічного стану 

об’єкта. Структура багаторівневої моделі 

включає чотири основні рівні функціонування: 

рівень даних, рівень цифрового моделювання, 

рівень аналітики та рівень керування. На рівні 

даних здійснюється сенсорний моніторинг 

параметрів електротехнічного обладнання за 

допомогою систем SCADA, IoT-вузлів і 

вбудованих датчиків струму, напруги, 

температури, вібрації та частоти, які формують 

безперервний потік сигналів xi(t), що є вхідними 

змінними для цифрового двійника [15]. Цей 

потік обробляється у вигляді матриці часових 

рядів: 
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де: m – кількість сенсорів; 

n – кількість вимірів за проміжок часу.  

 

Для усунення шумів застосовується ковзне 

середнє або фільтр Калмана, а нормалізація 

проводиться за формулою: 
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На рівні цифрового моделювання 

формується віртуальний образ обладнання, який 

відтворює електромагнітні, теплові та механічні 

процеси з урахуванням матеріальних 

характеристик і експлуатаційних режимів. 

Математична модель електричної підсистеми 

виражена системою диференціальних рівнянь: 
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де: L – індуктивність обмоток; 

R – активний опір; 

e(t) – електрорушійна сила, що залежить від 

збурень у мережі.  

 

Теплова підсистема описується рівнянням 

теплопередачі [14]: 
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        (4) 

де: C – теплоємність; 

Pвтрат – потужність втрат; 

h – коефіцієнт тепловіддачі; 

A – площа охолодження; 

Tср – температура середовища. 

 

Механічні коливання системи описуються 

рівнянням: 

 
2

2
,ел

d d
M c k M

dt dt

 
+ + =            (5) 

 

де: M – момент інерції ротора; 

c – коефіцієнт демпфування;  

k – жорсткість валу; 

Mел – електромагнітний момент. 

 

Представлені три підсистеми поєднуються 

у спільній симуляційній платформі цифрового 

двійника, що відтворює повну динаміку 

процесів деградації елементів. На рівні 

аналітики цифровий двійник перетворюється на 

інтелектуальний аналітичний модуль, де 

застосовуються методи машинного навчання та 

глибоких нейромереж для розпізнавання 

закономірностей і прогнозування відмов. У 

моделі прогнозування залишкового ресурсу 

використовується рекурентна нейромережа 

LSTM, яка отримує на вхід часові ряди 

параметрів 1 2{ ( ) ( ) ( )}, , , mx t x t x t  і дає наступну 

оцінку функції стану f(t), яка апроксимується як 

[12]: 

 

,( ) ( ( ) ), ,t tf t t LSTM x t h c+ =             (6) 

де: ht – прихований стан; 

tc – контекстна пам’ять, що забезпечує 

врахування попередніх спостережень. Для 

виявлення аномалій у багатовимірних даних 

застосовується автоенкодер з функцією втрат: 

 


2
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де: X – вхідні дані; 

X  – реконструйовані дані; 

відхилення L>Lкр сигналізує про потенційну 

відмову. 

 

Для виділення просторових 

закономірностей у сигналах струму, напруги та 

температури використовується згорткова 

нейромережа (CNN), що реалізує операцію 

згортки: 
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де: w – ядро фільтра.  

 

У гібридних моделях CNN-LSTM 

забезпечується як просторово-часовий, так і 

кореляційний аналіз ознак. 

На рівні керування результати прогнозу 

перетворюються у рішення щодо технічного 

обслуговування, що реалізується як функція 

прийняття рішень: 
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де: RUL(t) – прогнозований залишковий ресурс; 

Rmin – порогове значення ресурсу, нижче 

якого ініціюється ремонт або заміна вузла. 

 

Математичне представлення процесів 

деградації елементів обладнання базується на 

рівняннях старіння ізоляції, теплових 

навантажень і вібраційних збурень [16]. Для 

електроізоляційних матеріалів модель зносу 

визначається за експоненційним законом: 

 
( ) ,( ) 0 T tL t L e −=         (10) 

 

де: L(t) – залишковий строк служби;  

α – температурний коефіцієнт старіння.  

 

Теплова деградація описується моделлю 

Арреніуса: 
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Eak T Ae
−
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де: Ea– енергія активації процесу; 

R – універсальна газова стала;  

A – передекспоненційний множник. 

 

Вібраційні дефекти описуються через 

спектральну густину коливань: 
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де аномальні піки у спектрі сигналізують про 

пошкодження підшипників або дисбаланс 

ротора. Гібридна модель прогнозування 

об’єднує physics-informed і data-driven підходи у 

єдину структуру, де фізична частина формує 

апріорні обмеження для навчання ШІ-моделі [5]. 

У загальному вигляді така модель описується 

як: 

 

), , ,( ) ( ( ) ) ( ( )phys p ML my t f x t f x t = +     (13) 

 

де: fphys – фізична модель; 

fML – навчена нейромережа; 

θp і θm – вектори параметрів, що коригуються 

під час інтеграції моделей. 

 

Таблиця 1 

Структура багаторівневої цифрової моделі 

прогнозування відмов (сформовано автором) 

Рівень 

системи 

Джерела даних 

/ моделі 

Алгоритмі

чні методи 

Функціональний 

результат 

1. Рівень 

даних 

(сенсорика

, SCADA) 

Датчики 

струму, 

напруги, 

температури, 

вібрацій, 

SCADA-архіви 

Калманів 

фільтр, 

moving 

average 

Очищені та 

синхронізовані 

часові ряди 

параметрів 

2. Рівень 

цифрового 

моделюван

ня 

Електромагніт

на, теплова, 

механічна 

підсистеми 

MATLAB/

Simulink, 

Ansys Twin 

Builder 

Віртуальне 

відтворення 

поведінки 

обладнання та 

процесів 

деградації 

3. Рівень 

аналітики 

(AI-

моделі) 

Ознаки, 

отримані з 

моделі й 

сенсорів 

LSTM, 

CNN, 

Autoencode

r, PINN 

Прогноз 

технічного стану, 

виявлення 

аномалій, оцінка 

RUL 

4. Рівень 

керування 

Результати 

прогнозу, 

граничні стани 

Decision 

rules, fuzzy 

logic 

Автоматичне 

прийняття 

рішень про 

ремонт або 

заміну 

5. 

Інтеграцій

ний рівень 

(cloud-

edge) 

Промислові 

мережі, 

стандарти 

зв’язку 

Модуль 

інтеграції 

та 

синхроніза

ції даних 

Взаємодія 

цифрового 

двійника з 

системою 

діагностики 

підприємства 

 

Інтеграція моделі у систему технічної 

діагностики підприємства реалізується за 

допомогою cloud-edge архітектури, де 

обчислення з високими вимогами до швидкодії 

виконуються на рівні периферійних вузлів (edge 

computing), а довгострокові аналітичні задачі, 

тренування моделей і візуалізація виконуються 

у хмарному середовищі. Такий підхід 

забезпечує баланс між швидкістю реакції та 

аналітичною глибиною [13]. Стандартизовані 

інтерфейси, як-от IEC 61850, OPC UA або 

MQTT, забезпечують взаємодію між цифровими 

двійниками різних виробників і рівнів – від 

окремого агрегату до системи підстанції. 

Апробація проводилася на реальних 

промислових об’єктах, зокрема на прикладі 

силових трансформаторів типу ТМ-400/10 та 

асинхронних двигунів серії АІР132М, що 

функціонують у системах електроприводу 

гірничо-збагачувального виробництва. Для 

кожного типу об’єкта створювався окремий 

цифровий двійник, який реалізовував 

багаторівневу архітектуру: фізичний рівень із 

сенсорними каналами, віртуальну симуляційну 

модель електромагнітних і теплових процесів, 

аналітичний рівень нейромережевого 

прогнозування та рівень керування, який 

формував рішення щодо технічного 

обслуговування [1]. Основною метою апробації 

було визначення точності, стабільності та 

швидкодії запропонованої системи 

прогнозування у порівнянні з традиційними 

підходами технічної діагностики, що базуються 

на фіксованих інтервалах оглядів і статистичних 

моделях без самонавчання [10]. Для кількісного 

оцінювання ефективності прогнозування 

використовувалися чотири ключові метрики:  

1) Root Mean Square Error (RMSE): 
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2) Mean Absolute Percentage Error (MAPE): 
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3) F1-score: 
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4) Area Under Curve (AUC): 

 

 
1

0

) ,( ( )AUC TPR FPR d FPR=    (19) 

де: TP – істинно позитивні; 

FP – хибно позитивні; 

FN – хибно негативні класифікації; 

PR та FP – показники істинно-позитивної та 

хибно-позитивної частот відповідно. 

 

Всі вони можуть всебічно оцінювати 

поведінку моделі як у контексті безперервного 

прогнозу залишкового ресурсу, так і в задачах 

класифікації станів (нормальний, 

передаварійний, аварійний). Порівняння 

результатів моделювання показало, що 

впровадження гібридної моделі, яка поєднує 

фізично-інформовані (physics-informed) 

рівняння з машинним навчанням, забезпечує 

істотне зменшення помилки прогнозування 

залишкового ресурсу обладнання. Для 

трансформаторів середнє значення RMSE 

знизилося з 0,087 до 0,031, а MAPE – із 9,4 % до 

2,8 %, що вказує на підвищення точності в 3,4 

рази у порівнянні з базовими методами. Для 

асинхронних двигунів показники були дещо 

нижчими, але все ж істотно поліпшилися: RMSE 

= 0,046, MAPE = 4,1 %, при цьому F1-score 

перевищував 0,92, що свідчить про високу 

надійність класифікації станів. Графічний аналіз 

ROC-кривих підтвердив стійку роботу системи 

навіть при обмеженій кількості даних, що 

демонструє AUC = 0,96 для трансформаторів і 

AUC = 0,94 для двигунів. 

Стабільність роботи моделей оцінювалася 

методом крос-валідації (k-fold = 10), що 

дозволило виявити, що варіативність 

результатів не перевищує 5 %, а коефіцієнт 

варіації CV=σ/μ для помилки прогнозу 

залишався нижчим за 0,06, що вказує на високу 

узагальнювальну здатність моделі. Для 

порівняння: традиційні моделі, побудовані на 

регресійних залежностях і експертних правилах, 

мали значно більшу нестабільність (CV ≈ 0,18-

0,22). 

У процесі експериментів виявлено декілька 

ключових чинників, що визначають 

ефективність прогнозу. По-перше, повнота 

сенсорних даних: відсутність навіть одного з 

критичних параметрів (наприклад, температури 

обмоток трансформатора або осьових вібрацій 

двигуна) призводила до зростання RMSE на 25-

30 %, що свідчить про високу чутливість 

системи до втрат даних. По-друге, частота 

оновлення вимірювань: при зменшенні 

інтервалу збору даних з 10 с до 1 с точність 

прогнозу RUL (Remaining Useful Life) 

збільшувалася на 15-18 %, завдяки кращій 

репрезентативності динаміки деградаційних 

процесів. По-третє, синхронізація рівнів 

цифрового двійника – несвоєчасне оновлення 

аналітичної моделі або симуляційного ядра 

призводило до накопичення похибок і «зсуву» 

прогнозу, особливо в умовах змінних 

навантажень [3]. Нижче наведено узагальнену 

таблицю з результатами оцінювання 

ефективності, порівняльним аналізом та 

головними факторами впливу (табл. 2). 

Порівняльний аналіз засвідчив, що 

запропонована архітектура забезпечує істотне 

зниження частоти відмов обладнання за рахунок 

раннього прогнозу деградаційних процесів та 

своєчасного технічного обслуговування. Для 

підприємства з трансформаторами середнього 

класу навіть 25 % скорочення аварійних 

випадків означає річну економію понад 1,2 млн 

грн за рахунок зменшення простоїв, витрат на 

позапланові ремонти та штрафів за порушення 

графіка енергопостачання. Крім того, система 

дозволила скоротити час на проведення 

діагностичних процедур на 30-40 %, оскільки 

аналітичний рівень автоматично формує 

пріоритети для технічного персоналу, а 

алгоритм прогнозу RUL виконує попередню 

класифікацію станів агрегатів. Додатковим 

результатом дослідження стало підвищення 

надійності систем технічної діагностики через 

автоматичну самооцінку якості моделей. 

Функція self-validation здійснюється шляхом 

обчислення показника узгодженості Qc: 
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де: Qc>0,99 свідчить про високу довіру до 

результатів. Під час експлуатації цифрового 

двійника цей коефіцієнт підтримувався на рівні 

0,93-0,95, що забезпечує надійність аналітичних 

прогнозів. 
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Таблиця 2 

Ефективність та фактори впливу на точність прогнозування відмов  

електротехнічного обладнання (сформовано автором) 

№ Об’єкт / Методика RMSE 
MAPE 

(%) 

F1-

score 
AUC Основні переваги 

Основні чинники 

впливу 

Результати 

впровадження 

1 

Трансформатор ТМ-

400/10, традиційна 

діагностика (планові 

вимірювання) 

0,087 9,4 0,78 0,85 

Простота 

реалізації, відомі 

процедури 

Низька частота 

вимірів, 

відсутність 

інтеграції даних 

Висока кількість хибно 

позитивних 

спрацювань, 

перевитрати часу на 

обслуговування 

2 

Трансформатор ТМ-

400/10, гібридна 

DT+AI модель 
0,031 2,8 0,93 0,96 

Висока точність, 

адаптивність до 

навантажень, 

прогноз RUL 

Повнота 

сенсорних даних, 

синхронізація 

моделей 

Скорочення відмов на 

41 %, зменшення 

простоїв на 23 % 

3 

Асинхронний двигун 

АІР132М, 

традиційна система 

віброконтролю 

0,081 8,6 0,81 0,88 
Визначення 

грубих дефектів 

Обмежена 

кількість 

параметрів 

Несвоєчасне 

виявлення 

передаварійних станів 

4 

Асинхронний двигун 

АІР132М, 

інтелектуальний DT 

(LSTM+Autoencoder) 

0,046 4,1 0,92 0,94 

Виявлення 

прихованих 

дефектів, 

прогнозні 

сценарії 

Повнота сигналів, 

якість 

синхронізації 

edge-cloud 

Скорочення часу 

діагностики на 35 %, 

підвищення надійності 

на 27 % 

5 

Узагальнена модель 

з explainable AI та 

адаптивною 

оновлюваністю 

0,038 3,3 0,95 0,97 

Інтерпретованість 

рішень, 

динамічне 

перенавчання 

Частота 

оновлення, 

затримка потоків 

даних 

Самооновлення 

моделей, стабільність 

прогнозу на 2 роки 

експлуатації 

 

 

Дослідження також дозволило сформувати 

узагальнену закономірність впливу якості даних 

і обчислювальних ресурсів на точність 

прогнозу, що можна описати аналітичним 

виразом: 

 
1 2 3

1 2 3, , 1 ,( ) ( )прогн d u s d u sf k k k         −= = − −   (21) 

 

де: ρd – коефіцієнт повноти даних; 

τu – середній час оновлення моделі;  

γs – частота синхронізації шарів DT; 

αi – емпіричні показники чутливості. Для 

трансформаторів отримано α1=0,46, α2=0,31, 

α3=0,27, що підтверджує перевагу фактору 

якості даних над швидкістю оновлення. 

 

Серед практичних ефектів упровадження 

системи слід виділити не лише зменшення 

простоїв, але й перехід до ризик-орієнтованого 

технічного обслуговування, коли рішення 

приймаються не на основі календарного графіка, 

а залежно від прогнозного ресурсу. Завдяки цій 

парадигмі підприємство отримує змогу 

планувати ремонти на основі реального стану, 

знижуючи експлуатаційні ризики без втрати 

надійності. Перспективи подальших досліджень 

у цій сфері охоплюють кілька стратегічних 

напрямів. Перш за все – стандартизація моделей 

цифрових двійників, яка потребує розроблення 

уніфікованих описів інформаційних потоків, 

параметрів сенсорів та інтерфейсів взаємодії 

між підсистемами, відповідно до міжнародних 

протоколів IEC 61850, ISO/IEC 30182, OPC UA 

Companion Specifications. Це дозволить 

створювати взаємодіючі модулі цифрових 

двійників, які можна буде інтегрувати в єдині 

промислові екосистеми. 

Другим напрямом є розвиток explainable AI 

(XAI) у прогнозуванні технічного стану, що 

забезпечить інтерпретованість рішень системи 

та підвищить довіру до результатів. Для цього 

доцільно використовувати методи SHAP 

(Shapley Additive Explanations) і LIME (Local 

Interpretable Model-Agnostic Explanations), які 

дозволяють визначити внесок кожного 

параметра у формування прогнозу, що особливо 

важливо для критичних об’єктів енергетичної 

інфраструктури. 

Третій напрям стосується кіберзахисту 

цифрових копій обладнання, адже в умовах 

зростаючої цифровізації промисловості загроза 

несанкціонованого втручання у віртуальні 

моделі або потокові дані може спричинити 

серйозні наслідки. Запропоновано концепцію 

«trusted twin», коли цифровий двійник 

забезпечується блокчейн-підтвердженням 

цілісності даних, а обмін між вузлами 

здійснюється через захищені канали з 
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автентифікацією та шифруванням на рівні 

протоколу MQTT over TLS (рис.).  

Завдяки поєднанню фізичного 

моделювання, інтелектуальних алгоритмів і 

децентралізованої обробки даних 

багаторівневий цифровий двійник стає 

самонавчальною системою, яка здатна не лише 

відтворювати поточний стан силового 

обладнання, але й прогнозувати його 

деградаційні процеси, оптимізуючи технічне 

обслуговування на основі об’єктивних 

аналітичних показників. 

 

 

Рис.  Багаторівнева архітектура цифрового  

двійника силового електротехнічного обладнання з 

інтеграцією фізичних моделей та інтелектуальних 

методів прогнозування (розроблено автором) 

 

Таким чином, створена архітектура здатна 

буде забезпечити повну циклічність 

інформаційних потоків – data acquisition → 

digital modeling → intelligent prediction → 

decision making → model retraining – що є 

ключовою передумовою для переходу від 

реактивного до превентивно-прогностичного 

управління технічним станом 

електроенергетичних систем. 

Отже, результати проведених досліджень 

доводять, що створення багаторівневої 

архітектури цифрових двійників у поєднанні з 

інтелектуальними алгоритмами прогнозування 

формує нову якість технічної експлуатації 

електроенергетичного обладнання, 

забезпечуючи зменшення аварійності, економію 

ресурсів та підвищення безпеки енергосистем. 

Наукова новизна полягає у синергетичному 

об’єднанні physics-informed modelling і 

нейромережевих методів прогнозу, що дозволяє 

перейти від постфактум-діагностики до 

самонавчальних систем превентивного 

обслуговування. перспективи розвитку 

підтверджується розгортанням мережі 

взаємопов’язаних цифрових двійників, які в 

майбутньому забезпечуватимуть повну 

автономність управління технічним станом 

критичних енергетичних активів. 

Висновки. Дослідженням встановлено, що 

інтеграція багатошарової структури цифрового 

двійника з алгоритмами глибинного навчання і 

забезпечує принципово вищу якість 

прогнозування технічного стану силового 

електрообладнання. Впровадження 

комбінованої моделі, яка об'єднує physics-

informed математичні співвідношення з 

нейромережевими архітектурами, дозволило 

досягти зменшення показника RMSE до 

величини 0,031 та MAPE до 2,8 %, що формує 

триразове-чотириразове перевищення 

результативності порівняно з конвенційними 

діагностичними підходами. Отримані 

результати підтверджують високу здатність 

моделі до адаптації при варіативних 

навантаженнях і її потенціал до автономного 

навчання під час функціонування. 

Встановлено, що результативність 

інтелектуального передбачення несправностей 

детермінується комплексом системних чинників 

— повнотою сенсорної інформації, 

темпоральністю актуалізації вимірювань та 

узгодженістю між структурними рівнями 

цифрового двійника. Сформульована 

аналітична залежність, яка продемонструвала, 

що визначальним параметром виступає 

коефіцієнт інформаційної повноти даних, вплив 

якого на прогностичну якість переважає над 

впливом частоти оновлення чи обчислювальної 

потужності. За умов оптимального 

інформаційного забезпечення система досягає 

показника AUC вище 0,96, що забезпечує 

високу достовірність класифікації 

експлуатаційних станів і консистентність 

результатів при тривалому використанні. 

Розроблена інтелектуальна система 

прогнозування на базі технології цифрових 

двійників генерує практичний ефект у формі 

скорочення часу простою обладнання на 30-40 

%, редукції кількості аварійних ситуацій на 25-

40 % і оптимізації витрат на технічне 

обслуговування понад 20 %. Створена cloud-

edge структура забезпечує оптимальне 

співвідношення між оперативністю відгуку та 

глибиною аналітичної обробки, тоді як 

інтеграція explainable AI та систем кібербезпеки 

на рівні концепції «trusted twin» закладає 

фундамент для формування самонавчальних, 
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автономних і захищених діагностичних систем у 

перспективних енергетичних інфраструктурах. 
 

 

Л і т е р а т у р а  

1. Al-Shetwi A. Q., Atawi I. E., El-Hameed M. A., 

Abuelrub A. Digital Twin Technology for 

Renewable Energy, Smart Grids, Energy Storage 

and Vehicle-to-Grid Integration: Advancements, 

Applications, Key Players, Challenges and Future 

Perspectives in Modernising Sustainable Grids. IET 

Smart Grid. 2025. 

https://doi.org/10.1049/stg2.70026 

2. Amin U., Kim D., Ahmed F. N., Ahmad G., Hossain 

M. J. Digital Twins for Smart Asset Management in 

the Energy Industry: State-of-the-Art. Expert 

Systems With Applications. 2025. Vol. 289. Article 

128358. 

https://doi.org/10.1016/j.eswa.2025.128358 

3. Chen S. (2025). Towards Prescriptive Maintenance 

Using Digital Twins and Artificial Intelligence 

[Licentiate thesis, Chalmers University of 

Technology, Department of Industrial and Materials 

Science, Gothenburg, Sweden]. 190 p. URL: 

https://research.chalmers.se/publication/547701/fil

e/547701_Fulltext.pdf 

4. Falekas G., Karlis A. Digital Twin in Electrical 

Machine Control and Predictive Maintenance: 

State-of-the-Art and Future Prospects. Energies. 

2021. Vol. 14(18). P. 5933. 

https://doi.org/10.3390/en14185933 

5. Fassi Y., Heiries V., Boutet J., Boisseau S. Towards 

Physics-Informed Machine-Learning-Based 

Predictive Maintenance for Power Converters: A 

Review. IEEE Transactions on Power Electronics. 

2023. Vol. 39(2). pp. 2692-2720. 

https://doi.org/10.1109/TPEL.2023.3328438 

6. Hosamo H. H., Nielsen H. K., Kraniotis D., 

Svennevig P. R., Svidt K. Digital Twin framework 

for automated fault source detection and prediction 

for comfort performance evaluation of existing non-

residential Norwegian buildings. Energy and 

Buildings. 2023. Vol. 281. Article 112732. 

https://doi.org/10.1016/j.enbuild.2022.112732 

7. Hu J., Xiao H., Ye Z., Luo N., Zhou M. Research 

and Prospects of Digital Twin-Based Fault 

Diagnosis of Electric Machines. Sensors. 2025. Vol. 

25(8). p. 2625. https://doi.org/10.3390/s25082625 

8. Lang L., Du J., Guo J., Xue G. A Digital Twin-

Based Approach for Full Lifecycle Condition 

Monitoring of Power Grid Equipment. Frontiers in 

Artificial Intelligence and Applications. 2025. P. 

201-210. DOI 10.3233/FAIA250268. 

9. Makedon V., Myachin V., Plakhotnik O., Fisunenko 

N., Mykhailenko O. Construction of a model for 

evaluating the efficiency of technology transfer 

process based on a fuzzy logic approach. Eastern-

European Journal of Enterprise Technologies. 

2024. no 2(13(128)). p. 47-57. 

https://doi.org/10.15587/1729-4061.2024.300796. 

10. Makedon V., Myachin V., Aloshyna T., Cherniavska 

I., Karavan N. Improving the Readiness of 

Enterprises to Develop Sustainable Innovation 

Strategies through Fuzzy Logic Models. Economic 

Studies (Ikonomicheski Izsledvania). 2025. Vol. 34, 

No. 5. pp. 165-179. https://archive.econ-

studies.iki.bas.bg/2025/2025_05/2025_05_09.pdf 

11. Nakti I., Mansouri M., Al-Hmouz R., Khedher A. 

Artificial Intelligence Techniques With Digital 

Twin for Fault Diagnosis in Interconnected 

Systems: A Review. IEEE Access. 2025. Vol. 13. P. 

91860-91874. 

https://doi.org/10.1109/ACCESS.2025.3572563. 

12. Rana S. AI-driven fault detection and predictive 

maintenance in electrical power systems: A 

systematic review of data-driven approaches, 

digital twins, and self-healing grids. American 

Journal of Advanced Technology and Engineering 

Solutions. 2025. Vol. 1(1), p. 258-289. 

https://doi.org/10.63125/4p25x993 

13. Singh R. R., Bhatti G., Kalel D., Vairavasundaram 

I., Alsaif F. Building a Digital Twin Powered 

Intelligent Predictive Maintenance System for 

Industrial AC Machines. Machines. 2023. Vol. 

11(8), 796. 

https://doi.org/10.3390/machines11080796 

14. Thwe M. M., Ştefanov A., Rajkumar V. S., Palensky 

P. Digital Twins for Power Systems: Review of 

Current Practices, Requirements, Enabling 

Technologies, Data Federation, and Challenges. 

IEEE Access. 2025. Vol. 13. pp. 105517-105540. 

https://doi.org/10.1109/ACCESS.2025.3580055 

15. Xu N., Hu L., Di X., Tang Y., Dong L., Sun X. 

Research Status and Progress of Digital Twin 

Models for Electric Power System Equipment. In 

Proceedings of the 4th International Conference on 

Cyber Security, Artificial Intelligence and the 

Digital Economy (CSAIDE 2025), 07–09 March 

2025, Kuala Lumpur, Malaysia. ACM, New York, 

NY, USA, 2025, 7 p. 

https://doi.org/10.1145/3729706.3729778 

16. Zhong D., Xia Z., Zhu Y., Duan J. Overview of 

predictive maintenance based on digital twin 

technology. Heliyon. 2023. Vol. 9(4). e14534. 

https://doi.org/10.1016/j.heliyon.2023.e14534 

 

R e f e r e n c e s  

1. Al-Shetwi A. Q., Atawi I. E., El-Hameed M. A., 

Abuelrub A. Digital Twin Technology for 

Renewable Energy, Smart Grids, Energy Storage 

and Vehicle-to-Grid Integration: Advancements, 

Applications, Key Players, Challenges and Future 

Perspectives in Modernising Sustainable Grids. IET 

Smart Grid. 2025. 

https://doi.org/10.1049/stg2.70026 

2. Amin U., Kim D., Ahmed F. N., Ahmad G., Hossain 

M. J. Digital Twins for Smart Asset Management in 

the Energy Industry: State-of-the-Art. Expert 

Systems With Applications. 2025. Vol. 289. Article 

https://doi.org/10.1049/stg2.70026
https://doi.org/10.1016/j.eswa.2025.128358
https://doi.org/10.3390/en14185933
https://doi.org/10.1109/TPEL.2023.3328438
https://doi.org/10.1016/j.enbuild.2022.112732
https://doi.org/10.3390/s25082625
https://archive.econ-studies.iki.bas.bg/2025/2025_05/2025_05_09.pdf?utm_source=chatgpt.com
https://archive.econ-studies.iki.bas.bg/2025/2025_05/2025_05_09.pdf?utm_source=chatgpt.com
https://doi.org/10.63125/4p25x993
https://doi.org/10.3390/machines11080796
https://doi.org/10.1109/ACCESS.2025.3580055
https://doi.org/10.1145/3729706.3729778
https://doi.org/10.1016/j.heliyon.2023.e14534
https://doi.org/10.1049/stg2.70026


ВІСНИК СХІДНОУКРАЇНСЬКОГО НАЦІОНАЛЬНОГО УНІВЕРСИТЕТУ імені Володимира Даля № 9 (295) 2025 89 

 

 

128358. https://doi.org/10.1016/j.eswa.2025. 

128358 

3. Chen S. (2025). Towards Prescriptive Maintenance 

Using Digital Twins and Artificial Intelligence 

[Licentiate thesis, Chalmers University of 

Technology, Department of Industrial and Materials 

Science, Gothenburg, Sweden]. 190 p. URL: 

https://research.chalmers.se/publication/547701/fil

e/547701_Fulltext.pdf 

4. Falekas G., Karlis A. Digital Twin in Electrical 

Machine Control and Predictive Maintenance: 

State-of-the-Art and Future Prospects. Energies. 

2021. Vol. 14(18). P. 5933. 

https://doi.org/10.3390/en14185933 

5. Fassi Y., Heiries V., Boutet J., Boisseau S. Towards 

Physics-Informed Machine-Learning-Based 

Predictive Maintenance for Power Converters: A 

Review. IEEE Transactions on Power Electronics. 

2023. Vol. 39(2). pp. 2692-2720. 

https://doi.org/10.1109/TPEL.2023.3328438 

6. Hosamo H. H., Nielsen H. K., Kraniotis D., 

Svennevig P. R., Svidt K. Digital Twin framework 

for automated fault source detection and prediction 

for comfort performance evaluation of existing non-

residential Norwegian buildings. Energy and 

Buildings. 2023. Vol. 281. Article 112732. 

https://doi.org/10.1016/j.enbuild.2022.112732 

7. Hu J., Xiao H., Ye Z., Luo N., Zhou M. Research 

and Prospects of Digital Twin-Based Fault 

Diagnosis of Electric Machines. Sensors. 2025. Vol. 

25(8). p. 2625. https://doi.org/10.3390/s25082625 

8. Lang L., Du J., Guo J., Xue G. A Digital Twin-

Based Approach for Full Lifecycle Condition 

Monitoring of Power Grid Equipment. Frontiers in 

Artificial Intelligence and Applications. 2025. P. 

201-210. DOI 10.3233/FAIA250268. 

9. Makedon V., Myachin V., Plakhotnik O., Fisunenko 

N., Mykhailenko O. Construction of a model for 

evaluating the efficiency of technology transfer 

process based on a fuzzy logic approach. Eastern-

European Journal of Enterprise Technologies. 

2024. no 2(13(128)). p. 47-57. 

https://doi.org/10.15587/1729-4061.2024.300796. 

10. Makedon V., Myachin V., Aloshyna T., Cherniavska 

I., Karavan N. Improving the Readiness of 

Enterprises to Develop Sustainable Innovation 

Strategies through Fuzzy Logic Models. Economic 

Studies (Ikonomicheski Izsledvania). 2025. Vol. 34, 

No. 5. pp. 165-179. https://archive.econ-

studies.iki.bas.bg/2025/2025_05/2025_05_09.pdf 

11. Nakti I., Mansouri M., Al-Hmouz R., Khedher A. 

Artificial Intelligence Techniques With Digital 

Twin for Fault Diagnosis in Interconnected 

Systems: A Review. IEEE Access. 2025. Vol. 13. P. 

91860-91874. 

https://doi.org/10.1109/ACCESS.2025.3572563. 

12. Rana S. AI-driven fault detection and predictive 

maintenance in electrical power systems: A 

systematic review of data-driven approaches, 

digital twins, and self-healing grids. American 

Journal of Advanced Technology and Engineering 

Solutions. 2025. Vol. 1(1), p. 258-289. 

https://doi.org/10.63125/4p25x993 

13. Singh R. R., Bhatti G., Kalel D., Vairavasundaram 

I., Alsaif F. Building a Digital Twin Powered 

Intelligent Predictive Maintenance System for 

Industrial AC Machines. Machines. 2023. Vol. 

11(8), 796. 

https://doi.org/10.3390/machines11080796 

14. Thwe M. M., Ştefanov A., Rajkumar V. S., Palensky 

P. Digital Twins for Power Systems: Review of 

Current Practices, Requirements, Enabling 

Technologies, Data Federation, and Challenges. 

IEEE Access. 2025. Vol. 13. pp. 105517-105540. 

https://doi.org/10.1109/ACCESS.2025.3580055 

15. Xu N., Hu L., Di X., Tang Y., Dong L., Sun X. 

Research Status and Progress of Digital Twin 

Models for Electric Power System Equipment. In 

Proceedings of the 4th International Conference on 

Cyber Security, Artificial Intelligence and the 

Digital Economy (CSAIDE 2025), 07–09 March 

2025, Kuala Lumpur, Malaysia. ACM, New York, 

NY, USA, 2025, 7 p. 

https://doi.org/10.1145/3729706.3729778 

16. Zhong D., Xia Z., Zhu Y., Duan J. Overview of 

predictive maintenance based on digital twin 

technology. Heliyon. 2023. Vol. 9(4). e14534. 

https://doi.org/10.1016/j.heliyon.2023.e14534 

 

 

Tsvietkov O.V. Intelligent methods for 

predicting failures of power electrotechnical 

equipment based on multilevel digital twins 

The article explores the use of intelligent 

approaches to predicting failures of power electrical 

equipment through the implementation of multilayer 

digital twins that integrate physical modeling, machine 

learning technologies, and big data analytics in order to 

enhance the reliability of power grid operation. The 

study aims to develop and experimentally validate a 

comprehensive digital model that synthesizes physics-

informed mathematical equations with deep learning 

algorithms to achieve higher accuracy in residual life 

prediction and minimize the occurrence of technical 

failures in transformer equipment and asynchronous 

electric motors. The methodological framework of the 

research is based on the formation of a multilayer 

architecture of a digital twin, which includes: a sensor 

layer for data aggregation, a physical modeling layer of 

electromagnetic, thermal, and mechanical phenomena, 

an analytical layer employing machine learning 

algorithms, and a decision-making layer incorporating 

elements of fuzzy logic. The scientific results obtained 

showed that the use of a hybrid model can reduce the root 

mean square error (RMSE) to 0.031, reduce the mean 

absolute percentage error (MAPE) to 2.8%, and increase 

the F1-score to 0.93, which significantly exceeds the 

performance of classical diagnostic methods. It has been 

established that the completeness of sensor information 

and the frequency of model updates exert a decisive 
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influence on predictive accuracy, while the system’s 

ability to automatically adapt to load variations has been 

experimentally confirmed. The developed architecture 

has shown strong resilience to data deficiency and a high 

level of generalization (CV < 0.06). The applied 

significance of the study lies in reducing emergency 

downtime by 30–40%, optimizing maintenance costs, and 

transforming the management of equipment condition 

toward a risk-oriented strategy. Future research 

directions include the standardization of digital twin 

technologies, the advancement of explainable AI 

methods, and the implementation of basic cybersecurity 

systems for next-generation industrial digital platforms. 

Keywords: digital twin, intelligent forecasting, 

machine learning, residual life, technical diagnostics, 

power equipment. 
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