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В процесі класифікації подрібненої руди за крупністю 

на грохоті тонкого вологого грохочення руди в його 

конструкції формуються різноманітні коливання, 

які поширюються у вигляді біжучих хвиль. Для опису 

і моделювання динамічної реакції об’єкту, в 

елементах якого розповсюджуються біжучі хвилі, 

його представлено у вигляді мультіагентної 

системи. Такий підхід базується на хвильовій 

передавальній функції, яка визначає взаємодії між 

агентами, параметри біжучих хвиль та описує 

поведінку системи з локальної точки зору окремих її 

елементів. Аналіз отриманих результатів 

моделювання показав, що використаний підхід добре 

підходить для відображення загальної топології 

хвильових процесів у досліджуваній структурі та її 

загальної поведінки. Разом з тим, застосована 

модель включає основні вузлові точки конструкції 

грохота але не відображає хвильовий процес, що 

відбувається безпосередньо на ситовій поверхні. 

Вирішення цього завдання потребує використання 

великої кількості агентів із відповідним врахуванням 

їх взаємодії, що є досить складним при цьому підході. 

Розглянуто альтернативний підхід, заснований на 

застосуванні блоків фізичного моделювання на 

основі програмного комплекса Simscape® для 

Simulink® /MATLAB®. Ситове полотно 

представлено у вигляді структури з розподіленими 

параметрами, реалізованої для  податливості 

конструкції на вертикальні коливання та вигин. 

Запропонована структура складається з 

елементарних блоків Mass-Spring-Damper, що 

з’єднуються між собою за допомогою паралельних 

пружинних амортизаторів. Така структура 

забезпечує інерцію полотна, а системи пружинних 

демпферів забезпечують її податливість. Модель 

симулює динамічну реакцію системи, коливається у 

відповідь на прикладену силу і згинається у відповідь 

на статичний дисбаланс маси. Перевагою такого 

підходу є можливість застосування будь якої 

кількості елементарних блоків Mass-Spring-Damper з 

можливістю формування із необхідною точністю 

розподілення як пружних якостей полотна, так і 

маси рудного матеріалу на ньому. Аналіз 

результатів моделювання свідчить про те, що 

запропонований підхід дозволяє визначати, 

формувати та досліджувати різноманітні режими 

руху рудного матеріалу під час грохочення для 

досягнення оптимальних технологічних та 

енергетичних показників процесу. 

Ключові слова: руда, грохочення, 

енергоефективність, моделювання, керування, 

автоматизація, характеристики. 
 

 

Вступ. Технологічні процеси гірничого 

виробництва пов’язані із використанням 

силових енергетичних впливів на продукти 

видобутку та переробки корисних копалин. 

Завдяки  цьому відбувається руйнування 

гірської породи під час буріння свердловин, 

дроблення, подрібнення і класифікація руди  в 

процесі її збагачення та ін. В свою чергу, 

силовий вплив, що формується технологічними 

агрегатами у вигляді  ударів, коливань і 

вібрацій, призводить до генерації та 

розповсюдження пружних повздовжніх і 

поперечних хвиль. Цей процес відбувається як у 

гірському масиві, кусковій рудній масі чи 

рудній пульпі, так і в елементах конструкції 

самих технологічних агрегатів, що з ними 

контактують.     

У практиці гірничого виробництва 

класифікація подрібненої руди за крупністю має 

важливе значення для досягнення високої якості 
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продукту, який подається далі на металургійний 

переділ. Останнім часом велика увага 

приділяється вдосконаленню цієї технологічної 

операції шляхом використання грохотів тонкого 

вологого грохочення руди. Мотивовані 

потребою промисловості ефективно обробляти 

гранульовані матеріали та бажанням досягти 

фундаментальних успіхів у фізиці 

нерівноважних станів, експериментальні та 

теоретичні дослідження показали, що 

розділення за розмірами є складним явищем. 

Хоча співвідношення розмірів є домінуючим 

фактором, специфічні для частинок властивості, 

такі як густина, пружність та тертя, можуть 

відігравати важливу роль. Характер вхідної 

енергії, граничні умови та проміжне середовище 

також виявилися значними факторами у 

визначенні просторових розподілів. Для 

дослідження цих властивостей 

використовуються експериментальні методи, 

включаючи електромагнітні перетворення, 

пряму візуалізацію, магнітно-резонансну 

томографію та ін. Для дослідження розділення 

за розмірами були розроблені методи 

молекулярної динаміки та моделювання Монте-

Карло. Аналітичні методи, такі як кінетична 

теорія, використовуються для вивчення 

взаємодії між розміром частинок і густиною у 

віброфлюїдизованому режимі, а для опису 

розділення за розмірами для глибоких шарів 

були запропоновані геометричні моделі [1].  

У роботі [2] досліджується рух частинок та 

еволюцію внутрішньої мікроструктури в 

бінарних сумішах за вібраційних умов. Акцент 

робиться на розумінні як глобальних, так і 

локальних процесів сегрегації в часі, а також на 

з'ясуванні потенційних основних механізмів. 

Моделювання за допомогою методу дискретних 

елементів (МДЕ) доводить, що великі частинки 

мають тенденцію підніматися до поверхні 

контейнера, тоді як дрібні частинки агрегуються 

на дні, що призводить до відомого ефекту 

бразильського горіха. Зі збільшенням 

інтенсивності вібрації ступінь сегрегації стає 

більш вираженим. Вертикальна сегрегація 

передує радіальній сегрегації та зрештою 

призводить до стабільного розділення бінарної 

суміші. Для всебічного аналізу поведінки 

сегрегації введено індекс сегрегації та виявлено 

кореляцію між вертикальною та радіальною 

сегрегацією. Ці результати підкреслюють 

потенційний вплив зовнішніх збурень на 

мікроструктуру гранульованих сумішей, що має 

значення для таких сценаріїв, як землетруси, 

селеві потоки та транспортні навантаження. 

У роботі  [3] представлено числове 

дослідження потоку частинок та поведінки 

просіювання на вібраційному грохоті. Потік 

частинок моделюється за допомогою методу 

дискретних елементів (МДЕ) у масштабі 

частинок. Модель МДЕ спочатку перевіряється 

на наявність відповідності між числовими та 

експериментальними результатами з точки зору 

розподілу відсотка проходження частинок 

різного розміру вздовж деки грохота. Потім 

вивчається вплив таких змінних, як кут нахилу, 

частота коливань та амплітуда, з особливим 

акцентом на загальну ефективність грохота та 

розподіл швидкостей проходження для 

частинок різного розміру. Показано, що 

продуктивність такого процесу просіювання 

пов'язана з потоком частинок на грохоті, таким 

як структура шару частинок, швидкості 

частинок та взаємодія частинка-частинка та 

частинка-дека. 

Що стосується зовнішнього збудження, то в 

більшості попередніх досліджень для генерації 

тремтіння використовувалося синусоїдальне 

збудження, тоді як насправді все ще існують 

тремтіння в несинусоїдальному режимі. На 

сьогоднішній день, окрім таких окремих 

досліджень, було проведено мало 

систематичних досліджень взаємозв'язку між 

режимами струшування, які створюють 

несинусоїдальний рух, та явищем сегрегації. У 

роботі [4] еволюція сегрегації за різних режимів 

вібрації простежується та аналізується, при 

цьому сегрегація характеризується новим 

графічним індексом сегрегації, що має як 

фізичне, так і геометричне значення. 

Динамічну поведінку конструкції 

технологічних агрегатів можна оцінити з точки 

зору параметрів хвиль, що поширюються через 

її елементи [5]. Цей підхід широко відомий як 

метод біжучої хвилі (МБХ). Поширення 

зовнішнього збудження всередині елементів 

конструкції та поведінка хвиль на розриві 

визначаються амплітудою хвиль зміщення, а 

також коефіцієнтами відбиття та пропускання 

хвиль. Сукупність цих властивостей забезпечує 

стислий метод оцінки динамічної реакції 

конструкцій. У роботі [5] показано, що МБХ 

вимагає менше обчислювального часу, ніж 

метод дискретних елементів МДЕ, може 

безпосередньо враховувати частотно-залежні 

ефекти взаємодії елементів конструкції в аналізі 

та дає точніші результати на високих частотах.  

Метою цієї статті є формулювання та 

обґрунтування теоретичної основи 

використання підходу поширення біжучих 
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хвиль для аналізу динаміки та керування 

процесом тонкого вологого грохочення руди.  

Викладання основного матеріалу. В 

процесі класифікації подрібненої руди за 

крупністю на грохоті тонкого вологого 

грохочення руди в його конструкції формуються 

різноманітні коливання, які поширюються у 

вигляді біжучих хвиль (рис. 1).  
 

 

Рис. 1. Розповсюдження пружних хвиль по 

конструкції грохота тонкого вологого грохочення 

руди: 1 – рудний живильник; 2 – рама грохота;  

3 – полотно сита; 4 – вхідний рудний матеріал;  

5 – надрешітний продукт грохочення; 

6 – підрешітний продукт грохочення;  

7 – вертикальні вібрації рами грохота; 8 – пружні 

хвилі у рамі грохота 

Біжуча хвиля в середовищі – це збурення 

середовища, яке поширюється через нього в 

певному напрямку та з певною швидкістю. Під 

«збуренням» мається на увазі зміщення 

частинок, що складають середовище, від їхнього 

положення спокою або рівноваги. Ідея підходу 

полягає в тому, щоб розглядати кожну частину 

пружного середовища як потенційний 

осцилятор, який взаємодіє з сусідніми 

частинами, штовхаючи або тягнучи їх. Коли 

біжуча хвиля досягає певного місця в 

середовищі, вона приводить цю частину 

середовища в рух, надаючи їй певну енергію та 

імпульс, які вона потім передає сусідній частині, 

і так далі по лінії [6-8]. 

Математичний вираз біжучої хвилі можна 

отримати із загального диференціального 

рівняння в частинних похідних  
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Це рівняння можна проаналізувати шляхом 

заміни змінних 

 𝑢(𝑥, 𝑡) = 𝑈(𝜉 ),                       (2) 

 

де 𝜉 = 𝜉(𝑥, 𝑡) = функція, яку потрібно 

визначити.  
 

 

 

Рис. 2. Процес розповсюдження поперечних (а) 

 та повздовжніх (б) хвиль у середовищі 

(нормалізовані значення амплітуди): 𝜉 – амплітуда; 

x – переміщення; t – час; c – швидкість 

Тоді, рівняння (1) можна записати як [7] 
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                    (3) 
 

Біжуча хвиля є лінійним випадком рівняння 

(3) для якого частинні похідні мають вигляд 
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𝜕𝑥
= 𝑘,   

𝜕2𝜉

𝜕𝑥2
=

𝜕2𝜉

𝜕𝑥𝜕𝑡 
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відповідно 

 

 𝜉(𝑥, 𝑡) = 𝑘(𝑥 − 𝑐𝑡),       (4) 

 

де k - хвильове число; c –швидкість хвилі. 

Цей випадок визначають як біжучу хвилю, 

оскільки він відповідає лінійному переміщенню 

вздовж осі x відносно t. Для цього випадку 

рівняння (3) зводиться до 
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або в канонічній формі 
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де константи c та k входять до f. 

Коли хвиля поширюється через 

середовище, його частинки, або елементи маси,  

коливаються навколо положення рівноваги. Із 

врахуванням фази 𝜙 швидкість коливань 

визначається виразом [8] 

𝑣𝑦(𝑥, 𝑡) =
𝜕𝜉(𝑥,𝑡)

𝜕𝑡
=

𝜕

𝜕𝑡
[𝐴sin(𝑘𝑥 − 𝑐𝑡 + 𝜙)] =

− 𝐴𝑤cos(𝑘𝑥 − 𝑐𝑡 + 𝜙) = −𝑣𝑦 𝑚𝑎𝑥 cos(𝑘𝑥 −

𝑐𝑡 + 𝜙),                             (7) 

Швидкість частинок середовища не є 

постійною, що означає наявність прискорення 

𝑎𝑦(𝑥, 𝑡) =
𝜕𝑣𝑦(𝑥, 𝑡)

𝜕𝑡

=
𝜕

𝜕𝑡
[−𝐴𝑤c𝑜𝑠(𝑘𝑥 − 𝑐𝑡 + 𝜙)]

= − 𝐴𝑤2 sin(𝑘𝑥 − 𝑐𝑡 + 𝜙) =
 −𝑎𝑦 𝑚𝑎𝑥 s𝑖𝑛(𝑘𝑥 − 𝑐𝑡 + 𝜙).            (8)

Важливими елементами хвильового 

підходу для оцінки динамічного стану об’єкту є 

визначення характеристичних ознак процесу 

поширення хвилі. До таких ознак можна 

віднести частинні похідні відносно координати 

𝑥. Перша похідна – це нахил хвилі в точці 𝑥 у 

момент часу 𝑡 [8] 

𝑠𝑙𝑜𝑝𝑒 =
𝜕𝜉(𝑥,𝑡)

𝜕𝑥
=

𝜕

𝜕𝑥
[𝐴s𝑖𝑛(𝑘𝑥 − 𝑐𝑡 + 𝜙)] =

𝐴𝑘 c𝑜𝑠(𝑘𝑥 − 𝑐𝑡 + 𝜙).               (9) 

Друга частинна похідна виражає як 

змінюється нахил або кривизна хвилі залежно 

від положення 

𝑐𝑢𝑟𝑣𝑎𝑡𝑢𝑟𝑒 =
𝜕2𝑦(𝑥,𝑡)

𝜕𝑥2
=

𝜕

𝜕𝑥
[𝐴s𝑖𝑛(𝑘𝑥 −

𝑐𝑡 +  𝜙)] = −𝐴𝑘2 s𝑖𝑛(𝑘𝑥 − 𝑐𝑡 +  𝜙).         (10) 

Загалом, за зазначених умов хвильовий 

процес описується лінійним хвильовим 

рівнянням, яке визначається співвідношенням 

прискорення та кривизни  

𝜕2𝜉(𝑥,𝑡)

𝜕𝑡2

𝜕2𝜉(𝑥,𝑡)

𝜕𝑥2

=
− 𝐴с2 sin(𝑘𝑥 − с𝑡 + 𝜙 )

−𝐴𝑘2 s𝑖𝑛(𝑘𝑥 − с𝑡 + 𝜙 )
=

с2

𝑘2
= 𝑣2,      (11) 

𝜕2𝜉(𝑥,𝑡)

𝜉𝑥2
=

1

𝑣2

𝜕2𝜉(𝑥,𝑡)

𝜕𝑡2
 .  (12) 

Хвиля є носієм енергії. Повна усереднена за 

часом густина енергії в області середовища, 

зайнятій хвилею, визначається як [6] 

𝐸

𝑉
=

1

2
𝜌
0
𝑤2𝜉

0
2
.   (13) 

де 𝑉 - об'єм середовища; 𝜌
0 – щільність

середовища.  

У разі застосування хвильового імпульсу 𝑝 

енергетичне співвідношення має вигляд 

𝐸

𝑉
=

𝑐𝑝

𝑉
. (14) 

Якщо хвиля поширюється зі швидкістю 𝑐, 

тоді потік енергії  дорівнює 
𝐸

𝑉
𝑐. Цей параметр 

визначає інтенсивність хвилі [6] 

𝐼 =
1

2
𝑐𝜌0𝑤

2𝜉0
2 =

1

2
𝑍𝑤2𝜉0

2 , (15) 

де 𝑍 - акустичний імпеданс середовища. 

𝑍 = 𝑐𝜌0 . (16) 

Для опису і моделювання динамічної 

реакції об’єкту, в елементах якого 

розповсюджуються біжучі хвилі, зручно 

представити його у вигляді мультіагентної 

системи [9]. Цей підхід заснований на 

використанні хвильових передавальних функцій 

та описує біжучі хвилі за допомогою графу 

шляхів [10, 11].  

Поведінка n-го агента в мультіагентній 

системі описується як [9-11] 

𝑋𝑛(s) = 𝑃(𝑠)𝑈𝑛(s),  (17) 

де s - змінна Лапласа;  𝑋𝑛(𝑠) - вихідний сигнал

агента, наприклад, положення; 𝑃(𝑠) - 

передавальна функція агента, тобто модель 

динаміки агента; 𝑈𝑛(𝑠) - вхідний сигнал агента,

який передається локальним контролером 

агента з метою вирівнювання 𝑋𝑛(𝑠) з вихідними

сигналами сусідніх агентів.  
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У разі наявності довільної кількості сусідів 

у агента 

𝑈𝑛(𝑠) = 𝐶(𝑠)∑ (𝑋𝑘(𝑠) − 𝑋𝑛(𝑠)𝑘∈𝑁𝑏
),   (18) 

де 𝑁𝑏 - набір сусідніх агентів n-го агента; 𝐶(𝑠) -
передавальна функція контролера. 

Модель агента тоді має вигляд 

𝑋𝑛(𝑠) = 𝑀(𝑠)∑ (𝑋𝑘(𝑠) − 𝑋𝑛(𝑠)𝑘∈𝑁𝑏
,   (19) 

де 𝑀(𝑠) = 𝑃(𝑠)𝐶(𝑠). 
Також (19) можна виразити як 

𝑋𝑛(𝑠) = 𝑇𝑁(𝑠)∑ (𝑋𝑘(𝑠),𝑘∈𝑁𝑏
 (20) 

де 𝑇𝑁(𝑠) = 𝑀(𝑠)/1 + 𝑁𝑀(𝑠)); 𝑁 - кількість

сусідів n-го агента. 

Ідея підходу хвильової передавальної 

функції для багатоагентної системи з 

топологією графа шляхів полягає в тому, що 

вихід кожного агента, наприклад, позиція, 

визначається двома компонентами 𝑊𝑛,𝑛+1
𝑑

та 

𝑊𝑛+1,𝑛
𝑎

, що представляють дві хвилі, які 

поширюються в прямому та зворотному 

напрямках відповідно [10]. Перший нижній 

індекс є індексом агента, з якого відходить 

хвиля, а другий нижній індекс є індексом агента, 

до якого прибуває хвиля. Верхній індекс 

позначає, чи хвиля є агентом, що її відправляє 

(d), чи з агентом, до якого вона прибуває (a). У 

разі застосування простої лінійної топології 

(сусідами агента 𝑛 є агенти 𝑛 − 1 та 𝑛 + 1) має 

місце такий зв’язок [9] 

𝑋𝑛(𝑠) = 𝑊𝑛,𝑛+1
𝑑 (𝑠) + 𝑊𝑛+1,𝑛

𝛼 (𝑠) =
𝑊𝑛−1,𝑛
𝛼 (𝑠) + 𝑊𝑛,𝑛−1

𝑑 (𝑠), (21) 

Спосіб поширення хвилі описується 

ірраціональною передавальною хвильовою 

функцією (ПХФ), що визначається як [9,10] 

𝐺(𝑠) =
𝑋𝑛+1(𝑠)

𝑋𝑛(𝑠)
=

1

2
𝛼(𝑠) −

1

2
√𝛼2(𝑠) − 4,

𝑁 → ∞                           (22) 

де 𝛼(𝑠) = 1/𝑀(𝑠) + 2  G−1(𝑠) = 1/𝐺(𝑠).
Із врахуванням (21) та (22) 

𝑊𝑛,𝑛+1
𝑎 (𝑠) = 𝐺(𝑠)𝑊𝑛,𝑛+1

𝑑 (𝑠),        (23) 

𝑊𝑛+1,𝑛
𝑎 (𝑠) = 𝐺(𝑠)𝑊𝑛+1,𝑛

𝑑 (𝑠),        (24) 

Якщо існує хвиля, що поширюється до 

агента з більш ніж двома сусідами, то вона 

частково відбивається від цього агента і 

частково передається далі. Передавальна 

функція 𝑇t,𝑁(𝑠) описує, як хвиля проходить

через агент з 𝑁 сусідами, та передавальна 

функція  𝑇r,𝑁(𝑠) описує, як хвиля відбивається

від агента з 𝑁 сусідами  [10]   

𝑇t,𝑁(𝑠) =
𝑊𝑛,𝑛−1
𝑑 (𝑠)

Wn+1,n
a (s)

=
𝑇𝑁(𝑠)(1−𝐺

2(𝑠))

G(s)(1−NTn(s)G(s))
, 𝑁 ≥ 2 

(25) 

𝑇r,𝑁(𝑠) =
𝑊𝑛,𝑛−1
𝑑 (𝑠)

𝑊𝑛−1,𝑛
𝑎

=

(𝑁−1)𝑇𝑁(𝑠)𝐺
2(𝑠)+𝑇𝑁(𝑠)−𝐺(𝑠)

𝐺(𝑠)(1−𝑁𝑇𝑁(𝑠)𝐺(𝑠))

(𝑠)

, 𝑁 ≥ 1,            (26) 

де 𝑛 − 1 та 𝑛 + 1-й є сусідніми агентами n-го 

агента. 

Зазначений підхід використаний для 

формування динамічної моделі грохота тонкого 

вологого грохочення руди та опису топології 

взаємодії його елементів. На рис. 3 наведена  

схема моделі на основі мультіагентної 

структури з топологією графа шляхів.  

Рис. 3. Схема моделі грохота тонкого вологого 

грохочення руди на основі мультіагентної  

структури з топологією графа шляхів 

Наведені на рис. 3 агенти 𝑋𝑛 можуть бути

активними чи пасивними та описуються 

локальною динамікою G(s). Розповсюдження 

біжучих хвиль у системі відповідає виразам (21-

24). 

Аналіз отриманих результатів 

моделювання показав, що використаний підхід 

добре підходить для відображення загальної 

топології хвильових процесів у досліджуваній 

структурі та її загальної поведінки. Разом з тим, 

представлена на рис. 3 модель включає основні 

вузлові точки конструкції грохота але не 
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відображає хвильовий процес, що відбувається 

безпосередньо на ситовій поверхні. Вирішення 

цього завдання потребувало би використання 

великої кількості агентів із відповідним 

врахуванням їх взаємодії, що є досить складним 

при цьому підході [9]. Далі розглянутий 

альтернативний підхід, заснований на 

застосуванні блоків фізичного моделювання на 

основі програмного комплекса Simscape® для 

Simulink® /MATLAB® [12]. 

Ситове полотно представлено у вигляді 

структури з розподіленими параметрами, 

подібно до блоку Flexible Shaft із бібліотеки 

Simscape / Driveline / Couplings & Drives [12,13], 

але реалізованої для  податливості конструкції 

на вертикальні коливання та вигин. 

Запропонована структура складається з n 

елементарних блоків Mass-Spring-Damper, що 

з’єднуються між собою за допомогою 

паралельних пружинних амортизаторів (рис. 4).  

Рис. 4. Схема моделі ситового полотна у вигляді 

структури з розподіленими параметрами на основі 

елементарних блоків Mass-Spring-Damper 

Зазначена структура забезпечує інерцію 

полотна, а системи пружинних демпферів 

забезпечують її податливість. Модель симулює 

динамічну реакцію системи, коливається у 

відповідь на прикладену силу і згинається у 

відповідь на статичний дисбаланс маси. 

Перевагою такого підходу є можливість 

застосування будь якої кількості елементарних 

блоків Mass-Spring-Damper з можливістю 

формування із необхідною точністю 

розподілення як пружних якостей полотна, так і 

маси рудного матеріалу на ньому. 

На рис. 5 наведена схема моделі загальної 

структури автоматизованого керування 

грохотом тонкого вологого грохочення руди на 

основі хвильового підходу із застосуванням 

блоків програмного комплексу Simscape® для 

Simulink® /MATLAB® [12]. 

Рис. 5. Схема моделі загальної структури 

автоматизованого керування грохотом  

тонкого вологого грохочення руди  

на основі хвильового підходу 

У наведеній на рис. 5 моделі використані 

наступні елементи: 1-5 – блоки Subsystem 1-5; 6 

– блок Solver Configuration із бібліотеки

Simscape / Utilities; 7,14 – блоки PS-Simulink 

Converter із бібліотеки Simscape / Utilities; 8 – 

формувач сигналу запуску ЕМП; 9 – блок ЕМП; 

10 - блок Ideal Translational Motion Sensor із 

бібліотеки Simscape / Foundation Library / 

Mechanical / Mechanical Sensors; 11- блок Mass із 

бібліотеки Simscape / Foundation Library / 

Mechanical / Translational Elements; 12 - 

Translational Damper із бібліотеки Simscape / 

Mechanical Translational Elements; 13 - блок 

Translational Spring із бібліотеки Simscape / 
Mechanical Translational Elements; 15 – блок 

Simulink-PS Converter із бібліотеки Simscape / 

Utilities; 16 – блок Ideal Force Source із 

бібліотеки Simscape / Foundation Library / 

Mechanical / Mechanical Sources; 17,18 – блок 

Mechanical Translational Reference із бібліотеки 

Simscape / Foundation Library / Mechanical / 

Translational Elements; 19,20 - блоки Mux із 

бібліотек Simulink / Commonly Used Blocks, 

Simulink / Signal Routing; 21,22 - блоки Scope із 

бібліотек Scope Simulink / Commonly Used 

Blocks, Simulink / Sinks.  

Блоки Subsystem 1-4 відображають 

структуру системи із можливістю формування 

активних силових впливів у чотирьох точках 

(кутах) рами грохота. Ситове полотно умовно 
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відображено кількома елементарними блоками 

Mass-Spring-Damper. 

Блок Subsystem 5 застосовується для 

формування керуючих впливів в системі із 

врахуванням сигналів Input та Output с кожного 

блоку Subsystem 1-4. 

У якості формувача силових впливів 

використаний  електромагнітний перетворювач 

ЕМП [14], параметри якого задаються блоком 

ЕМП. 

Блок Ideal Force Source являє собою 

ідеальне джерело механічної енергії, яке генерує 

силу, пропорційну вхідному фізичному сигналу. 

Джерело є ідеальним у тому сенсі, що воно 

достатньо потужне, щоб підтримувати задану 

силу на своєму виході незалежно від швидкості 

на терміналах джерела. 

Блок Ideal Translational Motion Sensor являє 

собою пристрій, який перетворює змінну, 

виміряну між двома вузлами механічного 

поступального руху, на керуючий сигнал, 

пропорційний прискоренню, швидкості або 

положенню. Датчик є ідеальним, оскільки він не 

враховує інерцію, тертя, затримки, споживання 

енергії тощо. Термінали A, V (на рис. 5 не 

показаний) та P – це порти виведення фізичних 

сигналів, що відповідають прискоренню, 

швидкості та положенню відповідно. 

На рис. 6, у якості прикладу моделювання, 

наведено сигнал, що відповідає хвильовому 

процесу у двох точках ситового полотна 

грохота, що утворюється від прикладення 

періодичного силового впливу з частотою 100 

Гц, 20 Гц, 10 Гц та 2 Гц до одного із кутів рами 

грохота. 

Аналіз результатів моделювання свідчить 

про те, що запропонований підхід дозволяє 

визначати, формувати та досліджувати 

різноманітні режими руху рудного матеріалу під 

час грохочення для досягнення оптимальних 

технологічних та енергетичних показників 

процесу [15]. Хвильові процеси, наведені на рис. 

6, сформовані із застосуванням силового 

впливу, прикладеного лише в одній з можливих 

точок моделі. У якості регульованих параметрів 

також можуть бути застосовані амплітуда, 

частота, ширина силових імпульсів, та їх 

фазовий зсув у разі застосування декількох 

джерел генерації. З урахуванням частотного 

перетворення хвильових процесів, що слідує з 

рис. 6, для ідентифікації сформованих робочих 

режимів грохота доцільно використовувати 

результати спектрального аналізу виміряних 

сигналів. Зазначені особливості дають підстави 

вважати перспективним використання 

Рис. 6. Хвильовий процес у двох точках ситового 

полотна грохота, що утворюється від прикладення 

періодичного імпульсного силового впливу з 

частотою 100 Гц (а), 20 Гц (б), 10 Гц (в) та 2 Гц (д) 

до одного із кутів рами грохота (нормалізовані 

значення амплітуди). Ширина імпульсу – 15% 
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алгоритму модельно-прогнозуючого керування 

(МПК) для формування автоматизованого 

управління процесом тонкого вологого 

грохочення руди, реалізованого для об’єкта 

класу MIMO (Multiple-Input Multiple-Output). 

Висновки. Вперше динамічну модель 

грохота тонкого вологого грохочення руди 

представлено у вигляді мультіагентної системи, 

в елементах якої розповсюджуються пружні 

біжучі хвилі, передавальні функції визначають 

хвильові процеси взаємодії між ними, а 

топологія представлена графовою структурою, 

що дозволяє спрогнозувати локальну поведінку 

і вплив основних елементів конструкції на 

технологічні та енергетичні характеристики 

процесу грохочення. 

Для підвищення якості моделювання руху 

рудного матеріалу під час грохочення ситове 

полотно представлено у вигляді структури з 

розподіленими параметрами, яка складається з 

елементарних блоків маса-пружина-демпфер, 

з’єднаних між собою за допомогою паралельних 

пружинних амортизаторів, що дозволяє 

формувати із необхідною точністю 

розподілення як пружних якостей полотна, так і 

маси рудного матеріалу на ньому, та 

симулювати динамічну реакцію системи у 

вигляді коливань у відповідь на прикладену 

силу і згинання у відповідь на статичний 

дисбаланс маси. 

Напрямком подальших досліджень слід 

вважати алгоритмізацію формування та 

визначення параметрів оптимальних керуючих 

впливів у системі автоматизованого управління 

процесом тонкого вологого грохочення руди на 

основі хвильового підходу. 
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its overall behavior. At the same time, the applied model 
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