Examination of the load-bearing structure of a rail car with convex walls during transportation by railway ferry

Authors

  • O.V. Fomin State University of Infrastructure and Technology, Kiev, Ukraіna
  • А.О. Lovska Ukrainian State University of Railway Transport

DOI:

https://doi.org/10.33216/1998-7927-2022-271-1-47-52

Keywords:

transport mechanics, wagon, load-carrying structure, dynamic load, strength, railroad carriage

Abstract

The article is devoted to determination of dynamic load-car load-carrying capacity of the upgraded load-car bearing structure when transported by railroad vice. Feature of the load-bearing structure of the wagon is the presence of convex walls, which allows to increase the carcass volume by 8% compared with the prototype. Due to the increase of the car load-carrying capacity the stiffness of the car frame is increased due to installation of reinforcing diaphragms, use of corrugations in the most burdened zones, etc.

The load-bearing structure of the car is adapted to the transportation on the railway ferry. For this purpose, nodes for fastening of lancet couplers were installed on vertical plates of the pivot beams.

The results of dynamic load-car load-car load-carrying structure determination when the railroad car is carried by the sea are given. For this purpose, a mathematical model, which characterizes the transfer of the railroad sill with the cars, located on its decks, on the moving axis (roll). Hydrometeorological and logistical parameters of the water area of the sailing of the railroad sill were determined on the basis of the updated literature. The mathematical model was developed with the MathCad software package using the Runge-Cutt method. The initial conditions were set equal to zero. The results of these calculations showed that the total value of acceleration, which acts on the car load carrying structure, is 0.24g.

The obtained value of the acceleration was taken into account when calculating the strength of the load-bearing structure of the wagon by the method of connected elements in the SolidWorks Simulation program complex. When creating the calculation model, the loads acting on the load-bearing structure of the wagon through the lancet ties were taken into account. The results of the calculations showed that the maximum quantum-component loads occur in the area of the radial tide of the node to fasten the lancet ties but they do not exceed the admissible values.

The results of the conducted research will contribute to ensuring the safety of carriage by sea, reducing the cost of their repairs, the environmental friendliness of the railroad carriage, as well as increasing the efficiency of their operation.

References

1. Antipin D.Ya. Justification of a Rational Design of the Pivot Center of the Open-top Wagon Frame by means of Computer Simulation / Antipin D.Ya., Racin D.Yu., Shorokhov S.G. // Procedia Engineering. – 2016. – Vol. 150. P. 150 – 154.

2. Chandra Prakash Shukla. Study and Analysis of Doors of BCNHL Wagons / Chandra Prakash Shukla, P. K. Bharti // International Journal of Engineering Research & Technology (IJERT). – 2015. – Vol. 4, Issue 04. P. 1195 – 1200.

3. Fomin O. V., Lovska A. O., Plakhtii O. A., Nerubatskyi V. P. The influence of implementation of circular pipes in load-bearing structures of bodies of freight cars on their physico-mechanical properties / Fomin O. V., Lovska A. O., Plakhtii O. A., Nerubatskyi V. P. // Scientific Bulletin of National Mining University. – 2017. Vol 6. P. 89 – 96.

4. Lovska A. O. Computer simulation of wagon body bearing structure dynamics during transportation by train ferry / A. O. Lovska // Eastern-European Journal of Enterprise Technologies. – 2015. Vol. 3. P. 9 – 14.

5. Y.-G. Zhong. Fatigue Analysis of Structure of Gondola Car Body Based on Rigid-flexible Coupling Multi-body Systems. / Y.-G. Zhong, Y. Zhan, G. Zhao // 11th World Congress on Computational Mechanics (WCCM XI), Barcelona, Spain, 2014.

6. Y.Q. Yuan. Analysis of C80B Wagons Load-Stress Transfer Relation / Y.Q. Yuan, Q. Li, K. Ran // Applied Mechanics and Materials. – 2012. – Vol. 148-149. P. 331 – 335.

7. Sung Cheol Yoon. Evaluation of Structural Strength in Body Structure of Freight Car / Sung Cheol Yoon, Jeong Guk Kim, Chang Sung Jeon, Kang Youn Choe // Key Engineering Materials. – 2010. Vol. 417-418. P. 181 – 184.

8. Harak S. S. Structural Dynamic Analysis of Freight Railway Wagon Using Finite Element Method / Harak S. S., Sharma S. C., Harsha S. P. // Procedia Materials Science. – 2014. – Vol. 6. P. 1891–1898.

9. Фомін О. В. Концепт кузова напіввагона з випуклими стінами / О. В. Фомін, М. І. Горбунов, А. О. Ловська // Сучасні технології в науці та освіті. – 2021. С. 169 – 171. doi: https://doi.org/10.33216/MonographSNU(978-617-11-0211-8)-2021-320.

10. Lovska A. Calculation of Loads on Carrying Structures of Articulated Circular-Tube Wagons Equipped with New Draft Gear Concepts / Lovska A., Fomin O., Kučera P., Píštěk V. // Appl. Sci. – 2020. – Vol. 10(7441). doi:10.3390/app10217441.

11. Lovska A. Dynamic Load Modelling within Combined Transport Trains during Transportation on a Railway Ferry / Lovska A., Fomin O., Píštěk V., Kučera P. // Appl. Sci. – 2020. – Vol. 10(5710). https://doi.org/10.3390/app10165710.

12. Fomin O. Research into the Strength of an Open Wagon with Double Sidewalls Filled with Aluminium Foam / Fomin O., GerliciJ., Gorbunov M., Vatulia G., Lovska A., Kravchenko K. // Materials. – 2021. – Vol. 14 (12), 3420. https://doi.org/10.3390/ma14123420

13. Fomin O. Dynamics and strength of circular tube open wagons with aluminum foam filled center sills / FominO., GorbunovM., LovskaA., GerliciJ., KravchenkoK. // Materials. – 2021. – Vol. 14(8) 1915. https://doi.org/10.3390/ma14081915

14. Vatulia G.Optimization of the truss beam. Verification of the calculation results / Vatulia G., Komagorova S., Pavliuchenkov M. // MATEC Web of Conferences. – 2018. – Vol. 230. 02037. doi: 10.1051/matecconf/201823002037

15. Vatulia G. L. Rationalization of cross-sections of the composite reinforced concrete span structure of bridges with a monolithic reinforced concrete roadway slab / Vatulia G. L., Lobiak O. V., Deryzemlia S. V., Verevicheva M. A., Orel Ye. F. // IOP Conference Series: Materials Science and Engineering. – 2019. – Vol. 664. 012014. doi:10.1088/1757-899X/664/1/012014

16. Наставление по креплению генеральных грузов при морской перевозке для т/х “Герои Шипки”. Cargo securing manual for m/v “Geroi Shipky” № 2512.02. Одесса. – 1997. 51 с.

17. ДСТУ 7598:2014. Вагони вантажні. Загальні вимоги до розрахунків та проектування нових і модернізованих вагонів колії 1520 мм (несамохідних). [Чинний від 2015-07-01]. Київ, 2015. 250 с.

18. ГОСТ 33211-2014. Вагоны грузовые. Требования к прочности и динамическим качествам. [Действителенот 2016-07-01]. Москва, 2016. 54 с.

Published

2022-02-08