Аpplication of cavitation phenomenon and cavitation reactor for intensification of the esterification process
DOI:
https://doi.org/10.33216/1998-7927-2025-287-1-57-66Keywords:
cavitation, cavitation reactor, esterification, process intensification, hydrodynamic cavitation, chemical reaction optimization, energy savingAbstract
The article explores the use of cavitation phenomena to enhance the esterification process, which plays a crucial role in the chemical and petrochemical industries. The mechanisms of cavitation bubble formation, their influence on the physicochemical properties of the medium, and the acceleration of reactions in liquid-phase systems are examined. The advantages of a cavitation reactor for improving technological processes, increasing productivity, and reducing energy consumption are demonstrated.
Esterification is a widely used method for synthesizing complex esters, which are applied in organic synthesis, biofuel production, and the food, cosmetics, and pharmaceutical industries. Traditional esterification methods require significant energy expenditures and catalysts to achieve effective reaction performance. The study proves that cavitation effects contribute to more intensive mixing of reactants, the breakdown of intermolecular bonds, increased catalytic efficiency, and reduced process duration.
Various types of cavitation reactors, including hydrodynamic, ultrasonic, and acoustic systems, and their impact on esterification efficiency are analyzed. The results of experimental studies confirm that cavitation application ensures reaction product stability, minimizes the formation of by-products, and increases the yield of the final ester. Optimal operating parameters for the cavitation reactor, such as pressure, ultrasonic wave frequency, temperature, and reactant feed rate, are determined.
Additionally, the article provides an economic analysis of implementing cavitation technologies in industrial processes. It is established that the use of cavitation effects significantly reduces energy consumption, lowers catalyst costs, and improves the environmental performance of production. The prospects for further development of this technology are discussed, including the potential integration of cavitation reactors into existing production lines and their application in related industrial sectors.
Thus, the study results confirm that cavitation is a powerful tool for intensifying esterification processes, ensuring increased reaction efficiency, reduced energy costs, and improved product quality. The application of cavitation technologies opens new opportunities for optimizing chemical production and enhancing its competitiveness.
References
1. Saharan VK Computational study of diferent venturi and orifce type hydrodynamic cavitating devices. J Hydrodyn 2016. 28(2):293–305. https:// doi.org/10.1016/s1001-6058(16)60631-5
2. Mingming Ge, Guangjian Zhang, Martin Petkovšek, Kunpeng Long, Olivier Coutier-Delgosha, Intensity and regimes changing of hydrodynamic cavitation considering temperature effects, Journal of Cleaner Production, Volume 338, 2022, 130470, ISSN 0959-6526, https://doi.org/10.1016/j.jclepro.2022.130470.
3. Sun 孙逊, Xun & Xuan, Xiaoxu & Song, Yongxing & Jia, Xiaoqi & Ji, L& Zhao, Shan & Yoon, Joon-Yong & Chen, Songying & Liu, Jingting & Wang, Guichao. Experimental and Numerical Studies on the Cavitation in an Advanced Rotational Hydrodynamic Cavitation Reactor for Water Treatment. Ultrasonics Sonochemistry. 2021. 70. 105311. 10.1016/j.ultsonch.2020.105311.
4. Sarker TR, Pattnaik F, Nanda S, Dalai AK, Meda V, Naik S Hydrothermal pretreatment technologies for lignocellulosic biomass: a review of steam explosion and subcritical water hydrolysis. Chemosphere 284:131372. 2021. https://doi.org/10.1016/j.chemosphere.2021.131372
5. Hilares RT, Dionízio RM, Prado CA, Ahmed MA, da Silva SS, Santos JC Pretreatment of sugarcane bagasse using hydrodynamic cavitation technology: semi-continuous and continuous process. Biores Technol 290:121777. 2019. https://doi.org/10.1016/j.biortech.2019.121777
6. Jensen MB, Kofoed MVW, Fischer K, Voigt NV, Agneessens LM, Batstone DJ, Ottosen LDM Venturi-type injection system as a potential H2 mass transfer technology for full-scale in situ biomethanation. Appl Energy 222:840–846. 2018. https://doi.org/10.1016/j.apenergy.2018.04.034
7. Авдєєва, Леся & Макаренко, Андрій & Щенський, Дмитро. (2022). Застосування ефектів гідродинамічної кавітації в харчовій промисловості. Scientific Works. 86. 44-50. 10.15673/swonaft.v86i1.2402.
8. Khullar E, Dien BS, Rausch KD, Tumbleson ME, Singh V Efect of particle size on enzymatic hydrolysis of pretreated Miscanthus. Ind Crops Prod 44:11–17. 2013. https://doi.org/10.1016/j.indcrop.2012.10.015
9. Badve MP, Alpar T, Pandit AB, Gogate PR, Csoka L Modeling the shear rate and pressure drop in a hydrodynamic cavitation reactor with experimental validation based on KI decomposition studies. Ultrason Sonochem 22:272–277. 2015. https://doi.org/10.1016/j.ultsonch.2014.05.017
10. Xun Sun, Gaoju Xia, Weibin You, Xiaoqi Jia, Sivakumar Manickam, Yang Tao, Shan Zhao, Joon Yong Yoon, Xiaoxu Xuan, Effect of the arrangement of cavitation generation unit on the performance of an advanced rotational hydrodynamic cavitation reactor, Ultrasonics Sonochemistry, Volume 99 2023, 106544, ISSN 1350-4177, https://doi.org/10.1016/j.ultsonch.2023.106544.
11. Bimestre TA, Júnior JAM, Botura CA, Canettieri E, Tuna CE Theoretical modeling and experimental validation of hydrodynamic cavitation reactor with a Venturi tube for sugarcane bagasse pretreatment. Biores Technol 311:123540. 2020. https://doi.org/10.1016/j.biortech.2020.123540
12. Polczmann G., O.Toth A., Beck, Hancsok J., Investigation of Storage Stability of Diesel Fuels Containing Biodiesel Produced from Waste Cooking Oil, J. Clean. Prod., 111. 2016.
13. Calıskan, Y.; Yatmaz, H.C.; Bektas, N. Photocatalytic oxidation of high concentrated dye solutions enhanced by hydrodynamic cavitation in a pilot reactor. Process Saf. Environ. Prot. 2017, 111, 428–438.
14. Li, P.; Song, Y.; Wang, S.; Tao, Z.; Yu, S.; Liu, Y. Enhanced decolorization of methyl orange using zero-valent copper nanoparticles under assistance of hydrodynamic cavitation. Ultrason. Sonochem. 2015, 22, 132–138.
15. Lamoot, L., Manescau, B., Chetehouna, K., & Gascoin, N. Review on the Effect of the Phenomenon of Cavitation in Combustion Efficiency and the Role of Biofuels as a Solution against Cavitation. Energies, 2021. 14(21), 7265. https://doi.org/10.3390/en14217265
16. Вашкурак У. Ю., Шевчук Л. І. Кавітаційне очищення стічних вод жиркомбінату від органічних забруднень у присутності газів різної природи. Chemistry, Technology and Application of Substances = Хімія, технологія речовин та їх застосування. 2018. Vol. 1, № 1. P. 105–110. (фахове видання, Index Copernicus).
17. Oo, Y.M., Juera-Ong, P. & Somnuk, K. Methyl ester production process from palm fatty acid distillate using hydrodynamic cavitation reactors in series with solid acid catalyst. Sci Rep 14, 27732 2024. https://doi.org/10.1038/s41598-024-78974-3
18. Haoxuan Zheng, Ying Zheng, Jesse Zhu. Recent Developments in Hydrodynamic Cavitation Reactors: Cavitation Mechanism, Reactor Design, and Applications. Engineering, 2022, 19(12): 180‒198 https://doi.org/10.1016/j.eng.2022.04.027
19. Samuel, O. D., Aigba, P. A., Tran, T. K., Fayaz, H., Pastore, C., Der, O., Erçetin, A., Enweremadu, C. C., & Mustafa, A. Comparison of the Techno-Economic and Environmental Assessment of Hydrodynamic Cavitation and Mechanical Stirring Reactors for the Production of Sustainable Hevea brasiliensis Ethyl Ester. Sustainability, 2023. 15(23), 16287. https://doi.org/10.3390/su152316287
20. Hosseinzadeh Samani, B., Behruzian, M., Najafi, G., Fayazishishvan, E., Ghobadian, B., Behruzian, A., Mofijur, M., Mazlan, M., & Yue, J. The rotor-stator type hydrodynamic cavitation reactor approach for enhanced biodiesel fuel production. Fuel, 2021. 283, Article 118821. https://doi.org/10.1016/j.fuel.2020.118821
21. Ющенко С.Л., Столяренко Г.С., Мислюк Є.В. Застосування явища кавітації і кавітаційного апарату для інтенсифікації процесів хімічної технології // Збірник матеріалів конференції IV Української науково-технічної конференції з технології неорганічних речовин, 14-16 жовтня 2008 р., Дніпродзержинськ: ДДТУ, 2008.
22. Mazubert A., Taylor C., Aubin J., ad Poux M., Key Role of Temperature Monitoring in Interpretation of Microwave Effect on Transesterification and Esterification Reactions for Biodiesel Production, BioresourseTechnolgy, 16.1 2014.
23. Chuah L.F., Yusup S., AbdAziz A.R., Bokhari A., Jaromír K., MohdZamri A., Intensification of Biodiesel Synthesis from Waste Cooking Oil (Palm Olein) in a Hydrodynamic Cavitation Reactor: Effect of Operating Parameters on Methyl Ester Conversion, Chemical Engineering and Processing, 2015. 95: 235-240.
24. Ющенко С.Л., Столяренко Г.С., Мислюк Є.В. Отримання альтернативного палива (біодизелю) шляхом кавітаційного явища / Збірник тез доповідей II Всеукраїнської науково – практичної конференції з хімії та хімічної технології студентів, аспірантів та молодих вчених. К.: 2007. 247 с.
25. Mellouk H., Meullemiestre A., Maache-Rezzoug Z., Bejjani B., Dani A., and Rezzoug S.A.,Valorization of Industrial Wastes from French Maritime Pine Bark by Solvent free Microwave Extraction of Volatiles. J. Clean. Prod., 2016. 112 (Part 5), 4398-4405