Modeling of eddy current transformation of an electromagnetic signal to solve the problem of determining the characteristics of iron ore
DOI:
https://doi.org/10.33216/1998-7927-2025-288-2-68-78Keywords:
electromagnetic transducer, physical parameters, modeling, eddy currentsAbstract
The method of combined electromagnetic transformation for determining the characteristics of ferromagnetic materials is proposed. The method is based on the formation of elastic ultrasonic waves in a rock mass by electromagnetic means and the determination of the parameters of the pulsed eddy current transformation, as well as the amplitude, phase, and frequency of the generated accompanying acoustic signal that has traveled a certain distance in the studied environment. The connection of certain characteristic properties of mineralogical and technological properties of rocks with the parameters of electromagnetic acoustic transformation of sounding signals is proved. The main elements of the model of the eddy-current transformation process as an integral part of the proposed method are considered.
In eddy-current monitoring devices, an AC-driven excitation coil induces an eddy current in the sample through electromagnetic coupling. In turn, the circulation of the eddy current induces a secondary magnetic field. This field will change if the electrical conductivity and magnetic permeability of the sample change. The change in the field is detected by a sensing device, which is either a coil or a magnetic sensor.
The magnetic vector potential and magnetic flux density are calculated using the distributed current source (DCS) method. DCS takes into account eddy currents and magnetization using bulk and surface current sources, which provides closed-form solutions for eddy currents, magnetic flux density, and electromotive force.
The impedance is an important parameter characterizing the frequency response of eddy current sensors. A technology has been investigated that allows, using an optimization procedure for a limited number of segments of the Foster network, to calculate the impedance of the eddy current sensor coil, its resistive and inductive components, and to determine the frequency at which these components are equal to each other. These parameters are characteristic features of the properties of ferromagnetic minerals, in particular, mineralogical and technological types of iron ore. For the practical implementation of this approach, it is proposed to apply the method of intelligent recognition using an adaptive neuro-fuzzy system.
References
1. Li Y, Tian G Y, Simm A. Fast analytical modelling for pulsed eddy current evaluation. NDT E Int., 2008, 41(6): 477–483.
2. Desjardins D, Krause T W, Clapham L. Transient eddy current method for the characterization of magnetic permeability and conductivity. NDT E Int., 2016, 80: 65–70.
3. Ala Eddine Lakhdari, Ahmed Cheriet, Islam Nacereddine El-Ghoul. Skin effect based technique in eddy current non-destructive testing for thickness measurement of conductive material. IET Circuits, Devices & Systems. 2019, Volume13, Issue2, p. 255-259. https://doi.org/10.1049/iet-smt.2018.5322.
4. Bour, J.-C., Zubiri, E., Vasseur, P. et. al. Étude de la répartition des courants de Foucault pulsés dans une configuration de contrôle non destructive. J. Phys. III, 1996, 6, (1), pp. 7– 22.
5. Popovic, Z., Popovic, B.D. Introductory electromagnetics. (Prentice hall Upper Saddle River, NJ, USA, 2000).
6. Kharudin Bin Ali, Ahmed N. Abdalla, Damhuji Rifai, Moneer A. Faraj. Review on system development in eddy current testing and technique for defect classification and characterization. IET Circuits, Devices & Systems, Special Issue: Developments and Advancements on Electronics Education. 2017, Volume 11, Issue 4, P. 338-351. doi: 10.1049/iet-cds.2016.0327.
7. Betta G., Ferrigno L., Laracca M., et al: ‘Optimized complex signals for eddy current testing’. IEEE Instrumentation Measurement Technology Conf., 2014, pp. 1120–1125
8. Schroeder M.R.: ‘Synthesis of low-peak-factor signals and binary sequences with low autocorrelation’, IEEE Trans. Inf. Theory, 1970, 16, (1), pp. 85–89
9. Xuanbing Qiu, Peng Zhang, Jilin Wei, Xiaochao Cui, Chao Wei, Lulu Liu. Defect classification by pulsed eddy current technique in con-casting slabs based on spectrum analysis and wavelet decomposition. Sensors and Actuators A: Physical, Volume 203, 1 December 2013, Pages 272-281. https://doi.org/10.1016/j.sna.2013.09.004.
10. Xingle Chen, Yinzhao Lei. Electrical conductivity measurement of ferromagnetic metallic materials using pulsed eddy current method. - NDT & E International, Volume 75, October 2015, Pages 33-38. https://doi.org/10.1016/j.ndteint.2015.06.005.
11. Zhicheng Shan, Yi Yuan, Bin Cao, Shilong Miao, Guojian Li, Qiang Wang. The effect of interaction between particles on eddy current separation. - Separation and Purification Technology, Volume 346, 2024, 127382. https://doi.org/10.1016/j.seppur.2024.127382.
12. Моркун В. С., Моркун Н. В., Грищенко С.М., Гапоненко А. А., Гапоненко І. А., Бобров Є. Ю. Моделювання електромагнітного акустичного перетворювача. Гірничий вісник, Кривий Ріг, 2023. Вип. 111. с. 88-95.
13. Sophian, A., Tian, G. & Fan, M. Pulsed Eddy Current Non-destructive Testing and Evaluation: A Review. Chin. J. Mech. Eng. 30, 500–514 (2017). https://doi.org/10.1007/s10033-017-0122-4.
14. S. Ramo, J. R. Whinnery, and T. Van Dum, Fields and Waves in Communication Electronics.
15. Forbes, L. K., Crozier, S., Doddrell, D. M. Rapid computation of static fields produced by thick circular solenoids. - IEEE Transactions on Magnetics, 1997, vol. 33, issue 5, pp. 4405-4410. DOI:10.1109/20.620453.
16. B. J. Hao, K. M. Lee, and K. Bai, "Distributed current source modeling method for 3D eddy current problem in magnetic conductor with discrete state-space J-φ formulation," Journal of Computational Physics, vol. 401, Jan. 2020. doi: 10.1016/j.jcp.2019.109027.
17. Distributed Current Source. https://github.com/wei-chen-li/Distributed-Current-Source.
18. Xia, Z.; Huang, R.; Chen, Z.;Yu, K.; Zhang, Z.; Salas-Avila, J.R.; Yin, W. Eddy Current Measurement for Planar Structures. Sensors 2022, 22,8695. https://doi.org/10.3390/s22228695.
19. Technologies Keysight. Impedance Measurement Handbook. Available online: www.keysight.com.
20. Vanderkooy, J., A Model of Loudspeaker Driver Impedance incorporating eddy currents in the pole structure,” J. Audio Eng. Soc., 37(37), pp. 119-128, 1989.
21. Thompson, S. C. and Warren, D. M., “Analog circuit model for loudspeakers including eddy current behavior and suitable for time domain simulation,” AES Convention Paper 9826, 143rd Convention, 2017.
22. Steve Thompson. MathWorks files for inductor with eddy currents in core. https://de.mathworks.com/matlabcentral/fileexchange/80218-mathworks-files-for-inductor-with-eddy-currents-in-core.
23. Thompson, Stephen Simscape model for Eddy Currents in a Cylindrical Core [Data set]. Scholarsphere. 2024. https://doi.org/10.26207/3h14-4190.
24. Thompson, S. C., Warren, D. M. and Gabrielson, T. B. Analog model for thermoviscous propagation in a cylindrical tube, J. Acoust. Soc. Am.135(2) pp. 585-590.
25. Bilbao, S. and Harrison, R., “Passive time-domain numerical models of viscothermal wave propagation in acoustic tubes of variable cross section,” J. Acoust. Soc. Am.140(1) 728 (2016). doi: 10.1121/1.4959025.
26. Thibault, A. and Chabassier, J., “Dissipative time-domain one-dimensional model for viscothermal acoustic propagation in wind instruments,” J. Acoust. Soc. Am.150(2) 1165 (2021). doi: 10.1121/10.0005537
27. Morkun, V., Morkun, N., Fischerauer, G., Tron, V., Haponenko, A., & Bobrov, Y. Identification of mineralogical ore varieties using ultrasonic measurement results. Mining of Mineral Deposits. 2024. 18(3), 1-8. https://doi.org/10.33271/mining18.03.001.
28. Morkun, N., Fischerauer, G., Tron, V., Gaponenko, A. Mineralogical Analysis of Iron Ore Using Ultrasonic Wave Propagation Parameters. - Acta Mechanica et Automatica, 2023, 17(3), p. 364-371.
29. Morkun V.S., Morkun N.V., Tron V.V., Serdiuk O.Y., Haponenko A. Use of backscattering ultrasound parameters for iron ore varieties recognition. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu, 2023, No 6, pp. 19-24. https://doi.org/10.33271/nvngu/2023-6/019.