Мodeling the dynamics of the overflow product in fine wet screening of iron ore
DOI:
https://doi.org/10.33216/1998-7927-2025-293-7-56-66Keywords:
control, automation, screening, model, characteristics, dynamics, vibrationAbstract
Screening or sifting is widely used in the mining industry to separate ore particles by size. Huge volumes of ore at mining enterprises are regularly subjected to industrial screening, so studying the kinetics of the process and optimizing the corresponding technology is of great economic importance. Solving this problem is complicated by the presence of many working variables and various disturbing factors that determine the results of this technological operation. Firstly, these include the complex distribution of ore particles by size and density, as well as the complex influence on the movement of the oversize product of various dynamic operating modes of the screening surface. Recently, fine wet screening screens have been increasingly used for the classification of crushed ore at enrichment enterprises. The use of wet material for screening, the solid phase of which includes ore particles of different densities and sizes, imposes additional requirements on the design and adjustment of the corresponding working equipment. During continuous screening, when the feed rate of ore material to the screen is high enough, and it creates a concentrated layer of particles of a certain thickness, for example, around the feed section, only the particles in the layer that are in direct contact with the screen have a chance to pass through the openings. As long as the upper layers are able to add small particles to this contact layer, the material flow rate will remain constant. As the material moves along the screen and more and more smaller particles pass through the holes, it becomes more dispersed. At the same time, the particles become more mobile and “separated,” transitioning from a “clumped” state to “separated” motion. These features significantly complicate the task of forming effective automated control of this process. The model of the dynamics of crushed ore material on the screening surface of a vibrating screen was studied, taking into account the advection, diffusion, segregation, and percolation of its particles in the material layer. The approach used allows taking into account the transformation of the particle size distribution of the solid phase of the oversize product and its density during movement on the screen surface. This improves the quality of automated control of the process.
References
1. Wang Z., Liu C., Wu J., Jiang H., Zhao Y. Impact of screening coals on screen surface and multi-index optimization for coal cleaning production. Journal of Cleaner Production. 2018. Vol. 187. P. 562-575. https://doi.org/10.1016/j.jclepro.2018. 03.238.
2. Wang G, Tong X. Screening efficiency and screen length of a linear vibrating screen using DEM 3D simulation. Mining Science and Technology (China). 2011. Vol. 21, No. 3. P. 451-455. https://doi.org/10.1016/j.mstc.2011.05.026.
3. Li Z., Tong X. A study of particles penetration in sieving process on a linear vibration screen. Int J Coal Sci Technol. 2015. Vol. 2, P. 299–305. https://doi.org/10.1007/s40789-015-0089-7.
4. Li J., Webb C., Pandiella S.S., Campbell G.M. Discrete particle motion on sieves - a numerical study using the DEM simulation. Powder Technology. 2003. Vol. 133, No. 1-3. P. 190-202. https://doi.org/10.1016/S0032-5910(03)00092-5.
5. Dai Sheng Zhang, Feng Gao, Xuzhen He, Daichao Sheng. Investigation of particle segregation in a vertically vibrated binary mixture: Segregation process and mechanism. Computers and Geotechnics. 2024. Vol. 169. P.106236. https://doi.org/10.1016/j.compgeo.2024.106236.
6. Combarros M., Feise H. J., Zetzener H., Kwade A. Segregation of particulate solids: Experiments and DEM simulations. Particuology. 2014. Vol. 12. P. 25-32. https://doi.org/10.1016/j.partic. 2013.04.005.
7. Deng Z., Umbanhowar P.B., Ottino J.M., Lueptow R. M. Modeling segregation of polydisperse granular materials in developing and transient free-surface flows. American Institute of Chemical Engineers AIChE Journal. 2019. Vol. 65. P. 882–893. https://doi.org/10.1002/aic.16514.
8. Fan Y., Schlick C.P., Umbanhowar P.B., Ottino J.M., Lueptow R.M. Modelling size segregation of granular materials: the roles of segregation, advection and diffusion. Journal of Fluid Mechanics. 2014. Vol. 741. P. 252-279. DOI:10.1017/jfm.2013.680.
9. Umbanhowar P.B., Lueptow R. M. and Ottino J.M. Modeling Segregation in Granular Flows. Annual Review of Chemical and Biomolecular Engineering. 2019. Vol. 10. P. 129-153. https://doi.org/10.1146/annurev-chembioeng-060718-030122.
10. Rahaman M. M., Sikdar M.M.H., Hossain M. B., Rahaman M.A., Jamal M. Hossain. Numerical solution of diffusion equation by finite difference method. IOSR Journal of Mathematics (IOSR-JM). 2015.Vol. 11, No. 6 Ver. IV. P. 19-25. www.iosrjournals.org. DOI: 10.9790/5728-11641925.
11. Martinec D. MATLAB Central File Exchange. WaveBox. https://www.mathworks.com/ matlabcentral/fileexchange/51958-wavebox. 2025.
12. Shankar S. Diffusion in 1D and 2D. MATLAB Central File Exchange. 2025.
13. https://www.mathworks.com/matlabcentral/fileexchange/38088-diffusion-in-1d-and-2d.
14. Graham W., Griffiths W., Schiesser E. Traveling Wave Analysis of Partial Differential Equations: Numerical and Analytical Methods with MATLAB and Maple. Elsevier Science. 2012. ISBN: 978-0-12-384652-5.
15. Salih A., Burgers’ Equation. Department of Aerospace Engineering Indian Institute of Space Science and Technology, Thiruvananthapuram. 2016. https://iist.ac.in/sites/default/files/people/ IN08026/Burgers_equation_viscous.pdf.
16. Mosby J., De Silva S. R, Enstad G.G. Segregation of Particulate Materials – Mechanisms and Testers. KONA Powder and Particle Journal. 1996. Vol. 14. P. 31-43. DOI:10.14356/kona.1996008.
17. Bridgwater J., Ingram N.D. Rate of Spontaneous Interparticle Percolation. Transactions of the Institution of Chemical Engineers. 1971. Vol. 49. P. 163-169. ISSN: 0046-9858.
18. Williams J.C. The Segregation of Powders and Granular Materials. A Review. Powder Technology. 1963. Vol. 15, No. 2. P. 245-251. https://doi.org/10.1016/0032-5910(76)80053-8.
19. Mosby J. Segregation of Particulate Solids: Processes, Mechanisms and Counteractions. Tel-Tek report no. 43003-2, 1994.
20. Liu P.Y., Yang R.Y. & Yu A.B. The effect of liquids on radial segregation of granular mixtures in rotating drums. Granular Matter. 2013. Vol. 15. P. 427–436. https://doi.org/10.1007/s10035-013-0392-1.
21. Fiedor S.J., Umbanhowar P., Ottino J.M. Effects of fluid viscosity on band segregation dynamics in bidisperse granular slurries. Physical Review E. 2007. Vol. 76. P. 041303. DOI: https://doi.org/10.1103/PhysRevE.76.041303.
22. Deng Z., Umbanhowar P. B., Ottino J.M., Lueptow R. M. Continuum modelling of segregating tridisperse granular chute flow. Proceedings of the royal Society A. 2018. Vol. 474, No. 2211. http://doi.org/10.1098/rspa.2017.0384.
23. Gray J.M.N.T., Ancey C. Multi-component particle-size segregation in shallow granular avalanches. Journal of Fluid Mechanics. 2011. Vol. 678. P. 535-588. DOI: https://doi.org/10.1017/ jfm.2011.138.
24. Schlick C.P, Isner A.B, Freireich B.J, et al. A continuum approach for predicting segregation in flowing polydisperse granular materials. Journal of Fluid Mechanics. 2016. Vol. 797. P. 95-109. doi:10.1017/jfm.2016.260.
25. Thornton A., Weinhart T., Luding S., Bokhove O. Modeling of particle size segregation: calibration using the discrete particle method. International Journal of Modern Physics C. 2012.Vol. 23, No. 08, P.1240014. https://doi.org/10.1142/S0129183 112400141.
26. Zhao Y., Xiao H., Umbanhowar P.B., Lueptow R.M. Simulation and modeling of segregating rods in quasi-2D bounded heap flow. American Institute of Chemical Engineers. AIChE J. 2017. Vol. 64. P. 1550–1563. https://doi.org/10.1002/aic.16035.
27. Holzbecher E. Environmental Modeling Using MATLAB R. Springer-Verlag Berlin Heidelberg. 2007. P. 392. ISBN 978-3-540-72936-5.
28. Morkun V. S., Morkun N. V., Hryshchenko S. M., Shashkina A. A. & Bobrov E. Y. General principles of formalization of technological process control of mining production in a dynamic distributed system. Radio Electronics, Computer Science, Control. 2024. Vol. 4. P. 210–221. https://doi.org/10.15588/1607-3274-2024-4-20.
29. Моркун В.С., Моркун Н.В., Грищенко С.М., Грищенко Я.О. Моделювання комбінованого електромагнітного та електромеханічного приводу грохота для підвищення його ефективності. Вісник Східноукраїнського національного університету імені Володимира Даля, м. Київ. 2025. Вип. 287, № 1. С. 46-56. https://doi.org/10.33216/1998-7927-2025-287-1-46-56.
 
							