Research on the influence of spark ignition energy on the detonation initiation process in a detonation tube
DOI:
https://doi.org/10.33216/1998-7927-2025-293-7-84-89Keywords:
spark ignition, detonation initiation, detonation tube, gas detonation chargeAbstract
The paper examines the impact of spark ignition energy on the detonation initiation process in a detonation tube for a powderless mortar with controlled shot energy. It is shown that successful tests have demonstrated the ability of mortar prototypes to launch shells without the use of traditional powder charges, which confirms the effectiveness of the developed launch technology. The system is designed for automatic loading and provides the ability to fire with direct fire. Unlike conventional mortars, the proposed system uses a gas detonation charge to regulate the firing range. Therefore, the range of the shell is controlled not by changing the mortar elevation angle, but by changing the shot energy while maintaining a fixed elevation angle. Replacing the powder charge with a combustible gas mixture contributes to the integration of the mortar shot control system into broader fire control systems. This allows you to create a new semi-direct fire mode, which improves the tactical deployment of weapons in combat conditions. To transfer this technology to military production, further research and development of a specialized mortar control system are necessary. The key parameters for controlling the energy of a mortar shot are the initial pressure and volume of the compressed gas charge in the gas detonation chamber. The results of experimental studies revealed the influence of the spark ignition energy on the process of initiating detonation in the detonation tube. The study was conducted for 3 ranges of values of the total energy of the spark discharge, which were equal to 50 mJ, 0.84-1.54 J, 13-14 J. The spread in the values of the total energy of the discharge is associated with the deviation of the voltage of the spark gap breakdown. At each of the values, measurements were carried out no less than 3 times. It was established that an increase in the discharge energy leads to a reduction in the distance and time of the transition of combustion to detonation. In particular, in a detonation tube with an internal diameter of 73 mm, filled with a stoichiometric mixture of technical propane-butane with oxygen, the time for the transition from combustion to detonation was reduced from over 1200 μs to about 200-300 μs in the event of an increase in the total energy of the spark discharge from 50 mJ to 13-14 J. At the same time, the distance from the transition from combustion to detonation was reduced from 299-413 mm to 185 mm.
References
1. Шевенко М. С. Боротьба з російською бронетехнікою за допомогою протитанкових засобів ЗС України: допомога піхотинцю. Київ : Гром. орг. «Товариство правозахисту ветеранів правових структур», 2015. 67 с.
2. Сакун О.В., Історія та перспективи застосування танкових мінометів. Механіка та машинобудування, Харків, 2018. № 1. С. 89–96.
3. Merkava 4: веб-сайт. URL: https://www.armyrecognition.com/military-products/army/main-battle-tanks/main-battle-tanks/merkava-iv-4-israel-uk (дата звернення 05.09.2024).
4. Streetfighter and the future of the Challenger 2: веб-сайт. URL: https://www.army-technology.com/features/streetfighter-challenger-2/?cf-view (дата звернення 05.09.2024).
5. British Army demos new Challenger 2 urban operation tank concept: веб-сайт. URL: https://www.shephardmedia.com/news/landwarfareintl/british-army-demos-new-challenger-2-urban-operatio/ (дата звернення 05.09.2024).
6. K. Korytchenko, C. Senderowski, D. Samoilenko, et al. Numerical analysis of the spark channel expansion in a high-pressure hydrogen–oxygen mixture and in nitrogen // Shock Waves, 2022, Vol. 32, pp. 321–335, https://doi.org/10.1007/s00193-022-01077-3
7. Korytchenko K., Sakun О., Dubinin D., Khilko Y., Nikorchuk A., Tsebriuk I. Experimental investigation of the fire-extinguishing system with a gas-detonation charge for fluid acceleration. Eastern-European Journal of Enterprise Technologies. Series: Applied physics. 2018. 3/5 (93), P. 47–54.
8. K. Korytchenko, R. Tomashevskiy, I. Varshamova et al. Numerical simulation of initial pressure effect on energy input in spark discharge in nitrogen // Problems of Atomic Science and Technology, 2019, Vol. 122(4), pp. 116–119, doi: 10.46813/2019-122-116
9. K. Korytchenko, Ye. Poklonskiy. Numerical simulation of gas-dynamic stage of spark discharge in oxygen // Problems of Atomic Science and Technology, 2013, Vol. (4), pp. 155–160.
10. Експериментальне дослідження процесу нагнітання стисненого газового заряду у газо-детонаційному мінометі./ Б.Г. Любарський, С.Ю. Кривошеєв, О.В. Єресько, В.І. Галиця, І.В. Поляков, Д.Б. Любарський // Механіка та машинобудування. – 2024. – № 1. – С. 157–168.
11. Q. Wang, J. Xiang, G. Chen, Y. Cheng, X. Zhao, and S. Zhang, “Propylene Flow, Microstructure and Performance of WC–12Co Coatings Using a Gas–Fuel HVOF Spray Process," J. Mater. Process. Technol. 213 (10), 1653–1660 (2013). https://doi.org/10.1016/j.jmatprotec.2013.04.007
12. H.D. Ng, J.H.S. Lee. Assessment of detonation hazards in high-pressure hydrogen storage from chemical sensitivity analysis // International Journal of Hydrogen Energy, 2007; Vol. 32(1), pp. 93-99, https://doi.org/10.1016/j.ijhydene.2006.03.012
13. R. Zitoun, D. Desbordes, C. Guerraud, B. Deshaies. Direct initiation of detonation in cryogenic gaseous H2-O2 mixtures // Shock Waves, 1995, Vol. 4(6). pp. 331-337, https://doi.org/10.1007/BF01413875
14. Korytchenko K., Tomashevskiy R., Essmann S., et al. Challenges of energy measurements of low-energy spark discharges / 2020 IEEE KhPI Week on Advanced Technology, KhPI Week 2020 - Conference Proceedings, 5-10 October 2020, pр.421-424. doi: 10.1109/KhPIWeek51551.2020.9250172
15. V. Kamenskihs, H.D. Ng, J.H.S. Lee. Measurement of critical energy for direct initiation of spherical detonations in stoichiometric high-pressure H2-O2 mixtures // Combustion and Flame, 2010, Vol. 157, pp. 1795–1799, https://doi.org/10.1016/j.combu stflame.2010.02.014
16. K. Korytchenko, R. Tomashevskiy, I. Varshamova et al. Numerical investigation of energy deposition in spark discharge in adiabatically and isothermally compressed nitrogen // Jpn. J. Appl. Phys, 2020, Vol. 59, SHHC04, https://doi.org/10.35848/1347-4065/ab72cc
17. K. Korytchenko, V. Markov, et al. Validation of the numerical model of a spark channel expansion in a low-energy atmospheric pressure discharge // Problems of Atomic Science and Technology, 2018, Vol. 116(4), pp. 144-149.
18. K. Korytchenko, V. Golota, et al. Numerical simulation of the energy distribution into the spark at the direct detonation initiation // Problems of Atomic Science and Technology, 2015, Vol. 97(3), pp. 154–158.
19. D. Vinnikov, K. Korytchenko, A. Sakun. Numerical investigation of the formation of chemically active components in the spark discharge in water vapors // Problems of Atomic Science and Technology, 2015, Vol. 98(4), pp. 220–223
20. K.V. Korytchenko, Y.V. Kashanskyi, O.V.Cherkashyn, et al. Comparison of spark channel expansion in hydrogen, oxygen and nitrogen // Prob-lems of Atomic Science and Technology, 2020, Vol. 130(6), pp. 165–168, https://doi.org/10.46813/2020-130-165
 
							