Study of the peculiarities of deformation of a pneumatic spring under conditions of its emergency operation

Authors

  • A.Ya. Kuzyshyn Lviv Polytechnic National University, Lviv city
  • V.V. Kovalchuk Lviv Polytechnic National University, Lviv city

DOI:

https://doi.org/10.33216/1998-7927-2025-294-8-66-72

Keywords:

pneumatic spring, emergency spring, deformation, vertical load, internal pressure

Abstract

Traffic safety is a key aspect of rolling stock operation. Given the trend toward increasing speeds, modern rolling stock features structural changes in its mechanical systems, particularly the implementation of pneumatic suspension systems. This system possesses specific stiffness and damping characteristics. However, during operation, malfunctions of the pneumatic system may occur (such as the absence of compressed air), which leads to the transfer of the vehicle body's load to the bogies via emergency springs. These springs exhibit significantly higher stiffness compared to a functioning pneumatic spring. This situation results in increased forces in the connections between the structural elements of the rolling stock and greater interaction forces between the wheelset and the rail track, ultimately leading to speed restrictions. The aim of this study is to experimentally investigate the deformation behavior of the pneumatic spring under emergency operating conditions and to determine the magnitude of the vertical deformation of the emergency spring. To achieve this goal, a methodology for experimental research was developed. It focuses on studying the vertical deformation of the pneumatic spring in emergency mode and is based on the use of a potentiometric linear displacement sensor, an analog-to-digital converter, and a laptop with specialized software. As a result, regularities in the vertical deformation of the pneumatic spring under the influence of static load from the vehicle body mass during pressure loss in the system were identified. Analysis of these patterns allowed for the identification of four main stages of pneumatic spring operation in emergency mode: deformation of the rubber-cord casing, contact of the vehicle body with the emergency spring, further deformation of the emergency spring under load, and completion of its deformation. During the experiment, it was recorded that the maximum vertical deformation of the emergency spring in the pneumatic suspension system reached 7.18 mm. The scientific novelty of the obtained results lies in the experimental identification of the deformation behavior of the pneumatic spring under emergency conditions and the determination of the emergency spring’s vertical deformation value. This will enable more accurate modeling of pneumatic suspension performance and support further analysis of the dynamic safety indicators of rolling stock under emergency pneumatic system operation.

References

1. Research of safety indicators of diesel train movement with two-stage spring suspension / A. Kuzyshyn et al. MATEC Web of Conferences. 2018. Vol. 234. P. 05003. URL: https: //doi.org/10.1051/matecconf/201823405003.

2. Кузишин А. Я., Ковальчук В. В., Соболевська Ю. Г. Встановлення коефіцієнтів вертикальної динаміки другого ступеня ресорного підвішування швидкісного електропоїзда ЕКр-1 «Тарпан». Інформаційно-керуючі системи на залізничному транспорті. 2025. Т. 30, № 1. С. 29–36. URL: https://doi.org/10.18664/ikszt.v30i1.326788.

3. Світовий досвід створення математичних моделей пневматичної ресори: переваги та недоліки / А. Я. Кузишин та ін. Наука та прогрес транспорту. 2021. № 4(94). С. 25–42. URL: https://doi.org/10.15802/stp2021/245974.

4. Wheel–rail dynamic of DMU IC4 car for DSB: modeling of the secondary air springs and effects on calculation results / C. Pellegrini et al. Vehicle System Dynamics. 2006. Vol. 44, sup1. P. 433–442. URL: https://doi.org/ 10.1080/00423110600872960.

5. Aizpun M., Vinolas J., Alonso A. Using the stationary tests of the acceptance process of a rail vehicle to identify the vehicle model parameters. Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit. 2013. Vol. 228, no. 4. P. 408–421. URL: https://doi.org/10.1177/0954409713478592.

6. Berg M. A Three–Dimensional Airspring Model with Friction and Orifice Damping. Vehicle System Dynamics. 1999. Vol. 33, sup1. P. 528–539. URL: https://doi.org/ 10.1080/00423114.1999.12063109.

7. Docquier N., Fisette P., Jeanmart H. Multiphysic modelling of railway vehicles equipped with pneumatic suspensions. Vehicle System Dynamics. 2007. Vol. 45, no. 6. P. 505–524. URL: https://doi.org/10.1080/ 00423110601050848.

8. Xu L. Mathematical Modeling and Characteristic Analysis of the Vertical Stiffness for Railway Vehicle Air Spring System. Mathematical Problems in Engineering. 2020. Vol. 2020. P. 1–12. URL: https://doi.org/10.1155/ 2020/2036563.

9. Berry D. T., Yang H. T. Y. Formulation and experimental verification of a pneumatic finite element. International Journal for Numerical Methods in Engineering. 1996. Vol. 39, no. 7. P. 1097–1114.

10. Analysis and modelling of the dynamic stiffness up to 400 Hz of an air spring with a pipeline connected to a reservoir / I. Mendia-Garcia et al. Journal of Sound and Vibration. 2023. P. 117740. URL: https://doi.org/10. 1016/j.jsv.2023.117740.

11. Кузишин А. Я., Ковальчук В. В. Експериментальні дослідження закономірностей деформування гумокордної оболонки пневматичної ресори швидкісного рухомого складу. Наука та прогрес транспорту. 2024. № 2(106). С. 53–63. URL: https://doi.org/10.15802/stp2024/306143.

12. Air suspension characterisation and effectiveness of a variable area orifice / A. Alonso et al. Vehicle System Dynamics. 2010. Vol. 48, sup1. P. 271–286. URL: https://doi.org/10.1080/00423111003731258.

13. Li X., Li T. Research on vertical stiffness of belted air springs. Vehicle System Dynamics. 2013. Vol. 51, no. 11. P. 1655–1673. URL: https://doi.org/10.1080/00423114.2013. 819984.

14. Sayyaadi H., Shokouhi N. Effects of air reservoir volume and connecting pipes' length and diameter on the air spring behavior in rail–vehicles. Iranian Journal of Science and Technology Transactions of Mechanical Engineering. 2010. Vol. 34, No. 5. P. 499–508. DOI: https://doi.org/10.22099/ijstm.2010.916.

15. Study on Different Connection Types of Air Spring / H. X. Gao et al. Applied Mechanics and Materials. 2013. Vol. 423-426. P. 2026–2034. URL: https://doi.org/10. 4028/www.scientific.net/amm.423-426.2026.

16. Mazzola L., Berg M. Secondary suspension of railway vehicles - air spring modelling: Performance and critical issues. Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit. 2012. Vol. 228, no. 3. P. 225–241. URL: https://doi.org/ 10.1177/0954409712470641.

Published

2025-10-25