Reasoning for the parameters of the traction system of an industrial shunting battery locomotive

Authors

  • Ye.S. Riabov National Technical University «Kharkiv Polytechnic Institute», Kharkiv city
  • A.V. Kachan National Technical University «Kharkiv Polytechnic Institute», Kharkiv city

DOI:

https://doi.org/10.33216/1998-7927-2025-296-10-52-60

Keywords:

traction system, energy storage, electric motor, energy efficiency, locomotive, traction rolling stock

Abstract

The article is devoted to determining and justifying the parameters of the traction system of an industrial manoeuvring battery locomotive, the use of which in industrial enterprises will allow the renewal of the locomotive fleet with insufficiently efficient diesel locomotives. The key advantages of using such locomotives are reduced fuel and energy consumption, lower maintenance costs, and reduced harmful emissions. To determine the parameters of traction systems, an analysis of the operating modes of existing shunting diesel locomotives was performed based on data from on-board systems. Data from ChME3 diesel locomotives used for shunting at Poltava Mining and Processing Plant PJSC was processed. It was determined that energy consumption during a twelve-hour shift ranges from 404 kWh to 1031 kWh at a maximum tangential power of 250 kW. With the specified energy consumption, the capacity of the energy storage device is 1022...1874 kWh. Calculations of the parameters of an energy storage device with lithium iron phosphate cells show that the mass of the cells is 5.8…10.7 tonnes, and the volume required for their placement is 2.9…4.9 m³. To accommodate storage devices with such mass and size parameters, as well as other electrical equipment, an appropriate locomotive design is required. The power of the energy storage device is 511...937 kW, which allows the locomotive to be used for hauling work characterised by a tangential power of no more than 420 kW. To ensure the energy efficiency of the traction electric drive, it is advisable to use an energy storage device with a maximum voltage of 600 V. This allows direct connection of auxiliary system converters to the storage device. For this case, a structural diagram of the traction system is proposed.

The energy performance of traction collector and asynchronous electric drives is considered. When using traction asynchronous electric motors in combination with two-stage gearboxes, an increase in the efficiency of both the traction electric drive and a reduction in energy consumption for cooling traction electric motors is expected. When using an asynchronous traction electric drive, it is possible to create a four-axle locomotive, including when modernising the existing crew compartments of serial shunting locomotives. 3D sketches of the equipment layout on a battery locomotive and a bogie with two motorised axles are provided using the example of the ChME3 diesel locomotive.

References

1. EMD® JOULE BATTERY ELECTRIC LOCOMOTIVES. URL: https://www.progressrail.com/en/Segments/Locomotive/Locomotives/FreightLocomotives/EMDJoule.html (дата звернення: 15.11.2025)

2. FLXdrive™ BATTERY-ELECTRIC LOCOMOTIVE TECHNOLOGY. URL: https://www.wabteccorp.com/locomotive/alternative-fuel-locomotives/FLXdrive (дата звернення: 15.11.2025)

3. FLXdrive™ BATTERY-ELECTRIC LOCOMOTIVE TECHNOLOGY. URL:https://www.wabteccorp.com/FLXdrive-Battery-Electric-Locomotive?inline (дата звернення: 15.11.2025)

4. Traction & Rolling Stock Vale takes delivery of CRRC battery locomotive. URL:https://www.railwaygazette.com/traction-and-rolling-stock/vale-takes-delivery-of-crrc-battery-locomotive/61495.article (дата звернення: 15.11.2025)

5. CRRC Dalian delivers battery locomotive to Thailand. URL: https://www.railjournal.com/technology/crrc-dalian-delivers-battery-locomotive-to-thailand/ (дата звернення: 15.11.2025)

6. The new shunting locomotive XNY with battery traction. URL: https://www.railway.supply/en/the-new-shunting-locomotive-xny-with-battery-traction/ (дата звернення: 15.11.2025)

7. Battery Locomotivesю URL: https://lz1866.com/battery-locomotives (дата звернення: 15.11.2025)

8. Japan: Hokuriku liefert hellblaue und gelbe Rangierloks an J-TREC. URL: https://www.lok-report.de/news/uebersee/item/42036-japan-hokuriku-liefert-hellblaue-und-gelbe-rangierloks-an-j-trec.html (дата звернення: 15.11.2025)

9. Battery Locomotives & Hybrid Rail Shunters URL: https://claytonequipment.co.uk/metro-mainline/battery-locomotives/ (дата звернення: 15.11.2025)

10. Battery Electric Locomotive (BEL) URL: https://medhatransportation.com/assets/files/MBL%20flyer%20editable.pdf (дата звернення: 15.11.2025)

11. Alstom Platform H3 / H4 SBB Aem 940 Lokomotive. URL: https://tst-suisse.ch/files/folder.78/sbb-aem-940.pdf (дата звернення: 15.11.2025)

12. Lightweight and flexible: FLIRT. URL: https://www.stadlerrail.com/en/solutions/rolling-stock/mainline-flirt (дата звернення: 15.11.2025)

13. Mireo Plus – a powerful train becomes even more powerful. URL: https://www.mobility. siemens.com/global/en/portfolio/rolling-stock/commuter-and-regional-trains/mireo/mireo-plus-b.html (дата звернення: 15.11.2025)

14. Правила капітальних ремонтів КР-1, КР-2 тепловозів серії ЧМЕ3, ЧМЕ3Т, ЧМЕ3Е (ЦТ-0124), які затверджені наказом Укрзалізниці від 13.12.2005 № 691-ЦЗ. URL: https://uz.gov.ua/about/technical_and_social_policy/repair_docs/ndi/ (дата звернення: 15.11.2025)

15. Riabov I., Kachan A. Selection of energy storage for an industrial battery locomotive. Results in Engineering, 2025, 27, 105881 doi: 10.1016/j.rineng.2025.105881

16. EVE Energy URL: https://www.evemall.eu/power-battery/prismatic-lfp-cell (дата звернення: 15.11.2025)

17. Рябов Є.С., Якунін Д.І., Рой С.В., Яготін В.О., Качан А.В. Визначення параметрів plug-in гібридної тягової системи для промислового маневрового локомотиву. Вісник Національного технічного університету «ХПІ».Серія: Енергетичні та теплотехнічні процеси й устаткування, 2024. №2(18). C.63-68. https://doi.org/10.20998/2078-774X.2024.02.08

18. Шайда В. П., Юр’єва О. Ю., Лисенко Є. В., Сич О. А. Підвищення енергетичної ефективності тягового колекторного електроприводу для маневрових тепловозів. Вісник Національного технічного університету «ХПІ». Серія: Енергетичні та теплотехнічні процеси й устаткування, 2024, 2(18). C.77-82. https://doi.org/10.20998/2078-774X.2024.02.10

19. Kuznetsov V., Kardas-Cinal E., Gołębiowski P., Liubarskyi B., Gasanov M., Riabov I., Kondratieva L., Opala M. Method of Selecting Energy-Efficient Parameters of an Electric Asynchronous Traction Motor for Diesel Shunting Locomotives—Case Study on the Example of a Locomotive Series ChME3 (ЧMЭ3, ČME3, ČKD S200). Energies 2022, 15, 317. https://doi.org/10.3390/en15010317

20. Axle drives TEH 22,5 / TKH 22,5 URL: https://www.ganzmotor.hu/product/axle-drives/axle-drives-teh-225-tkh-225/ (дата звернення: 15.11.2025)

21. Немілостівий В.О., Донченко А.В., Павленко Ю.С., Бойко В.О., Леонтєв В.М. Дослідження та розробка технічних вимог до нового маневрового тепловоза потужністю 750-800 к.с. для експлуатації у залізничних господарствах підприємств промисловості України. Збірник наукових праць ДП "УкрНДІВ". Рейковий рухомий склад. 2020, №8. С.17-24

22. Ципленков Д.В., Іванов О.Б, Бобров О.В., Кузнецов В.В., Артемчук В.В., Баб'як М.О. Проєктування електричних машин: навч. посіб. ; Нац. техн. ун-т «Дніпровська політехніка». Д. : НТУ «ДП». 2020. 408 с.

23. Коефіцієнт викидів парникових газів для виробництва та споживання електроенергії URL: https://gto.dixigroup.org/assets/images/ files/DiXi_GTO_Electricity_Grid_EF.pdf (дата звернення: 15.11.2025)

Published

2025-12-15