Сoagulation purification of used motor oils

Authors

  • Т.І. Chervinskyi Lviv Polytechnic National University, Lviv city
  • P.І. Kazymyriv Lviv Polytechnic National University, Lviv city

DOI:

https://doi.org/10.33216/1998-7927-2025-296-10-67-77

Keywords:

waste oils, oil aging, oil regeneration, coagulation, surfactants, mechanical impurities, acid number, IR spectroscopy

Abstract

Waste petroleum oils are toxic compounds with low biodegradability and pose a significant environmental hazard. Their release into soils and water bodies causes particularly severe ecological damage. To restore the properties of used mineral motor oils, various technological operations based on physical, chemical, and physicochemical processes are applied to remove degradation products and contaminants. However, the most challenging for regeneration are water-contaminated used oils (oil emulsions), which contain substantial amounts of water or aqueous solutions of cooling mixtures that enter the oils during emergency situations. The difficulty in regenerating such oils arises from the fact that the water present inhibits physical purification methods – such as filtration, settling, sedimentation, and dehydration by atmospheric-vacuum distillation – due to the high stability of water – oil emulsions. The study examined the coagulation behavior of used mineral motor oil in the presence of several inexpensive and commercially available coagulants, including starch, carboxymethylcellulose, sodium laureth sulfate, and cocamidopropyl betaine. The effect of the type and dosage of these coagulants on the operational properties of the purified oil was determined. The application of 10 wt.% starch at 80 °C for 30 min. resulted in complete removal of emulsified water from the waste oil, decreased the concentration of solid impurities, and slightly improved its viscosity-temperature characteristics. The incorporation of carboxymethylcellulose in the coagulation process also enabled complete removal of emulsified water, improved viscosity-temperature properties, reduced the amount of solid impurities, and lowered the acid number of the oil. In contrast, achieving the desired level of coagulation using sodium laureth sulfate required the addition of more than 20 wt.%. It was further demonstrated that cocamidopropyl betaine, used at a dosage of 10 wt.%, provided nearly complete removal of emulsified water, slightly reduced solid impurities, and improved viscosity - temperature properties. However, at a fixed dosage of cocamidopropyl betaine, the acid number of the refined motor oil increased. The effective performance of the selected coagulants in purifying used mineral motor oil was confirmed by both experimental results and IR spectroscopic analysis. The dehydrated and partially purified oil should subsequently undergo combined regeneration methods to achieve complete restoration of its operational properties.

References

1. Hrynyshyn O., Korchak B., Chervinskyy T., Kochubei V. Change in Properties of M-10DM Mineral Motor Oil After Its Using in the Diesel Engine. Chemistry & Chemical Technology. 2017. Vol. 11, No 3. P. 387–391. doi: 10.23939/chcht11.03.387.

2. Червінський T., Гринишин O., Корчак Б. Регенерація відпрацьованих моторних олив в присутності карбаміду. Вісник Національного університету «Львівська політехніка». Серія: Хімія, технологія речовин та їх застосування. 2015. № 812. С. 158–163.

3. Korchak B., Hrynyshyn O., Chervinskyy T., Polyuzhin I. Application of Vacuum Distillation for the Used Mineral Oils Recycling. Chemistry & Chemical Technology. 2018. Vol. 12, No 3. P. 365–371. doi: 10.23939/chcht12.03.365.

4. Кузнецова O., Нетреба З. Дослідження старіння мінеральних гідравлічних олив. I. Фракційний склад. Технологічний аудит і резерви виробництва. 2015. Том 3, № 4. С. 64–68.

5. Korchak B., Grynyshyn O., Chervinskyy T., Shapoval P., Nagurskyy A. Thermooxidative Regeneration of Used Mineral Motor Oils. Chemistry & Chemical Technology. 2020. Vol. 14, No 1. P. 129–134. doi: 10.23939/chcht14.01.129.

6. Dominguez-Rosado E., Pichtel J. Chemical Characterization of Fresh, Used and Weathered Motor Oil Via GC/MS, NMR and FTIR Techniques. Proceeding of Indiana Academy Science. 2003. Vol. 112, No 2. P. 109–116.

7. Sánchez-Alvarracín, C.; Criollo-Bravo, J.; Albuja-Arias, D.; García-Ávila, F.; Pelaez-Samaniego, M.R. Characterization of Used Lubricant Oil in a Latin-American Medium-Size City and Analysis of Options for Its Regeneration. Recycling. 2021. Vol. 6, No 10. P. 1–22. doi: 10.3390/recycling6010010.

8. Anand Kumar Tripathi, Ravikrishnan Vinu. Characterization of Thermal Stability of Synthetic and Semi-Synthetic Engine Oils. Lubricants. 2015. Vol. 3, No 1. P. 54–79. doi:10.3390/lubricants3010054.

9. Zhirong Liang, Longfei Chen, Mohammed S. Alam, Soheil Zeraati Rezaei, Christopher Stark, Hongming Xu, Roy M. Harrison. Comprehensive chemical characterization of lubricating oils used in modern vehicular engines utilizing GC × GC-TOFMS. Fuel. 2018. Vol. 220. P. 792–799. doi:10.1016/j.fuel.2017.11.142.

10. Чайка О.Г., Ковальчук О.З., Чайка Ю.А. Моніторинг утворення відпрацьованих олив в Україні. Вісник НУ «Львівська політехніка» «Хімія, технологія речовин та їх застосування». 2009. № 644. С. 221–224.

11. Караулов A., Худолій Н. Автомобільні масла. Моторні і транспортні. Асортимент і застосування: навч. посіб. Київ: Райдуга, 2000. 165 с.

12. V. Pelitli, Ö. Doğan, H. J. Köroğlu. Waste oil management: Analyses of waste oils from vehicle crankcases and gearboxes. Global Journal of. Environmental. Science. Management. 2017. Vol. 3, No 1. P. 11–20. doi: 10.22034/gjesm.2017.03.01.002.

13. Pantelis G. Nikolakopoulos, Stamatis Mavroudis and Anastasios Zavos. Lubrication Performance of Engine Commercial Oils with Different Performance Levels: The Effect of Engine Synthetic Oil Aging on Piston Ring Tribology under Real Engine Conditions. Lubricants. 2018. Vol. 6, No 4. P. 90–109. doi:10.3390/lubricants6040090.

14. Атлас технологічних схем виробництва полімерів та пластичних мас на їх основі: навч. посіб. / Суберляк O., Яковенко T., Бабаханова T., Тхір I. Львів: НУЛП, 2002. 160 с.

15. Rui Wang, Yi Feng, Yunqian Zhong, Yanzhao Zou, Mingjun Yang, Yucheng Liu, Ying Zhou. Enhancing Demulsification Performance for Oil–Water Separation through Encapsulating Ionic Liquids in the Pore of MIL-100(Fe). Langmuir. 2021. Vol. 37, No 27. P. 8232–8239. doi: 10.1021/acs.langmuir.1c00945

16. Ashwin Kumar Yegya Raman, Clint P. Aichele. Demulsification of Surfactant-Stabilized Water-in-Oil (Cyclohexane) Emulsions using Silica Nanoparticles. Energy & Fuels. 2018. Vol. 32, No 8. P. 8121–8130. doi: 10.1021/acs.energyfuels.8b01368

17. Pratik S. Gotad, Abdol Hadi Mokarizadeh, Mesfin Tsige, Sadhan C. Jana. Understanding Separation of Oil–Water Emulsions by High Surface Area Polymer Gels Using Experimental and Simulation Techniques. Langmuir. 2024. Vol. 40, No 46. P. 24622–24633. doi: 10.1021/acs.langmuir.4c03496.

18. Wu J., Xu Y., Dabros T., Hamza H. Effect of Demulsifier Properties on Destabilization of Water-in-Oil Emulsion. Energy Fuels. 2003. Vol. 17, No 6. P. 1554–1559. doi: 10.1021/ef030113e.

19. Falode O.A., Aduroja O. Ch. Development of Local Demulsifier For Water - In- OilEmulsion Treatment. International Journal of Sciences: Basic and Applied Rese. 2015. Vol. 24, No 1. P. 301–320.

20. Drochomirecki J.M. Application of Bio and Biobased Surfactants as Demulsifiers for Destabilization of Water in Crude Oil Emulsions, SPE Annual Technical Conference and Exhibition. San Antonio, Texas, USA. 2023.

Published

2025-12-15