Development of intelligent systems for monitoring the technical condition of braking and automatic coupling equipment of railway rolling stock

Authors

  • O.V. Fomin National Transport University, Kyiv city
  • M.V. Miroshnykova Volodymyr Dahl East Ukrainian National University, Kyiv city
  • S.M. Leonov National Transport University, Kyiv city
  • V.O. Bezlutsky Volodymyr Dahl East Ukrainian National University, Kyiv city
  • Ie.V. Gunko National Transport University, Kyiv city
  • І.В. Rodionov National Transport University, Kyiv city

DOI:

https://doi.org/10.33216/1998-7927-2025-296-10-104-113

Keywords:

transport, railway transport, railway rolling stock, braking and coupling equipment, technical condition assessment systems, modeling, intelligent diagnostics

Abstract

From a scientific point of view, the work developed new mathematical models that allow for a more accurate description of the dynamic characteristics of brake systems and automatic couplings in different operating modes. The need to create unified solutions for different types of rolling stock is relevant. Integration with existing railway transport management systems is an important task. The development of scalable and flexible monitoring systems is necessary. This will allow them to be adapted to the future needs of the industry. The introduction of innovative technologies will contribute to the development of railway infrastructure as a whole. Ukraine, as a country with an extensive railway network, has significant potential for the implementation of such solutions. Increasing the competitiveness of railway transportation is a strategic goal. This research is extremely relevant for ensuring the stability and safety of the functioning of railway transport. It is aimed at solving urgent problems of the industry. This will ensure stable and safe operation of railway transport. This provides a deeper understanding of the processes occurring in the equipment. The obtained machine learning algorithms demonstrate high efficiency in detecting hidden defects and predicting potential failures, which significantly exceeds the capabilities of traditional diagnostic methods. From an applied point of view, the developed prototype of an intelligent monitoring system has shown its operability and efficiency in laboratory conditions and on test sites. The system successfully integrates data from various sensors, providing a comprehensive analysis of the technical condition of the equipment in real time. This allows you to quickly respond to changes and make informed decisions regarding maintenance. The results of the study open the way to creating industrial samples of such systems that will have a significant economic effect by reducing the accident rate and optimizing the costs of operating and repairing rolling stock. The effectiveness assessment confirmed the significant economic potential of the implementation of such systems, which is manifested in reducing operating costs and increasing transportation safety. The results of the study are a solid basis for further scientific developments in the direction of autonomous diagnostic systems.

References

1. Іваськів Р., Доскочинський Д. Інноваційні методи діагностики гальмівних систем у транспортних засобах. Measuring and Computing Devices in Technological Processes. 2024. № 4. С. 137–142. DOI: https://doi.org/10.31891/2219-9365-2024-80-17

2. Мирошник М. А. Проєктування інтелектуальної системи моніторингу об'єктів транспортної інфраструктури. Інформаційно керуючі системи на залізничному транспорті. 2015. № 5. С. 18-24. DOI: https://doi.org/10.18664/ikszt.v0i5.55669

3. Sensor fusion for track geometry monitoring: integrating on board data and degradation models via Kalman filtering / H. Truong-Ba, J. Chin, M. E. Cholette, P. Borghesani. ArXiv. 2025. DOI: https://doi.org/10.48550/arXiv.2506.08028

4. Simulation of Working Process of the Electronic Brake System of the Heavy Vehicle / D. Leontiev, V. Klimenko, M. Mykhalevych, Y. Don, A. Frolov. Mathematical Modeling and Simulation of Systems (MODS 2019). Springer, 2020. Vol. 1019. P. 50–61. DOI: https://doi.org/10.1007/978 3 030 25741 5_6

5. The impact of smart grids on energy efficiency: a comprehensive review / T. M. Olatunde, A. C. Okwandu, D. O. Akande, Z. Q. Sikhakhane. Engineering Science & Technology Journal. 2024. Vol. 5. Issue 4. Р. 1257–1269. DOI: https://doi.org/10.51594/estj.v5i4.1016

6. Realizatsiya intellektualnyih funktsiy v elektronno pnevmatichnom tormoznom upravlenii transportnyih sredstv / M. Burckhardt, A. N. Turenko, N. G. Mikhalyevych, D. Leontiev. Mathematical Modeling and Simulation of Systems (MODS 2019). Springer, 2020. DOI: https://doi.org/10.1007/978 3 030 25741 5_6

7. Intelligent Locomotive Decision Support System Structure Development and Operation Quality Assessment / O. Gorobchenko, O. Fomin, I. Gritsuk et al. IEEE 3rd International Conference on Intelligent Energy and Power Systems (IEPS), Kharkiv, Ukraine. 2018. P. 239-243. DOI:10.1109/IEPS.2018.8559487

8. Determining rational parameters of the capacitive energy storage system for the underground railway rolling stock / O. Fomin, А. Sulym, I. Kulbovsky et al. Eastern-European journal of enterprise technologies. 2018. № 2/1(92). Р. 63-71. DOI: 10.15587/1729-4061.2018.126080

9. Theoretical and practical determination of parameters of on-board capacitive energy storage of the underground rolling stock / A.O. Sulim, O.V. Fomin, P.O. Khozya, A. Mastepan. Scientific Bulletin of National Mining University. 2018. Issue 5 (1). P.79-87. DOI: 10.29202/nvngu/2018-5/8

10. Risca D., Lourenço A., Marreiros G. Boosting inspired online learning with transfer for railway maintenance. ArXiv. 2025. DOI: https://doi.org/10.48550/arXiv.2504.08554

11. Transformer vibration forecasting for advancing rail safety and Maintenance 4.0 / D. C. Larese, A. B. Cerrada, G. D. Tomei et al. ArXiv. 2025. DOI: https://doi.org/10.48550/arXiv.2501.11730

12. Determining the dynamic loading on a semi-wagon when fixing it with a viscous coupling to a ferry deck / O. Fomin, A. Lovska, I. Kulbovskyi, H. Holub, I. Kozarchuk, V. Kharuta. Восточно-Европейский журнал передовых технологий. 2019. № 2(7). С. 6-12. URL: http://nbuv.gov.ua/UJRN/Vejpte_2019_2(7)__2

13. Rule based Anomaly Detection for Railway Signalling Networks / M. Heinrich, A. Gölz, T. Arul, S. Katzenbeisser. ArXiv. 2020. DOI: https://doi.org/10.48550/arXiv.2008.05241

14. Qing Wu X. G., Han Q. L. Railway Virtual Coupling: A Survey of Emerging Control Techniques. ArXiv. 2023. DOI: https://doi.org/10.48550/arXiv.2302.09718

Published

2025-12-15