Geospatial images processing and analysis for remote surface water monitoring
DOI:
https://doi.org/10.33216/1998-7927-2022-271-1-11-17Keywords:
surfaces water monitoring, water index, normalized difference wetness index, geospatial images classificationAbstract
Surface water is an important natural resource and plays an important role in many aspects of human life such as drinking water, agriculture, electricity production, transport and industry. Surface water changes influence on other natural resources and environment. Effective assessment of surface water dynamics is an important part of surface water monitoring. Recent research is often used methods based on geospatial images. The paper presents a study on methods, approaches and accuracy measures for remote surface water monitoring based on geospatial image processing and analysis. The stages of surface water monitoring based on geospatial images are defined and formalized. Image based methods of surface water monitoring are classified. These methods include methods based on spectral bands, supervised classification techniques based on machine learning methods, and unsupervised classification techniques based on water indexes. Issues of surface waters spatial-temporal analysis and accuracy measures are considered. The key measure of accuracy assessment is an overall accuracy of surface water extraction. Using of specific accuracy measure set such as producer's accuracy, user's accuracy, F–score and MICE coefficient can help to improve reliability of analysis assessment. The study on surface water monitoring based on water index is presented. The studying object is defined the lake Pishchane, Luhansk region, Ukraine in period of the spring flood in 2018-2019. The study on Pishchane surface water monitoring was based on the water index using normalized difference wetness index. Variabilities of color bands threshold is defined and improved for effective water and ground differentiation. Geospatial image analysis was evaluate using histogram. The study helps to defined a significant dependence of the method on the surface water extraction using normalized difference wetness index. We defined the clouds, fog, smog or temperature inversion on geospatial images can make water surface extraction worse. Therefore, atmospheric correction of satellite data to the L2A processing level is necessary.
References
1. Su Z., Yacob A., Wen J., Roerink G., He Y., Gao B. Voogaard H., van Diepen C. Assessing relative soil moisture with remote sensing data: theory, experimental validation, and application to drought monitoring over the North China Plain. Physics and Chemistry of the Earth, Parts A/B/C. – 2003. – Т. 28. – №. 1-3. – С. 89-101.
2. Crétaux J.F., Jelinski W., Calmant S., Kouraev A., Vuglinski V., Bergé-Nguyen M., Gennero M.-C., Nino F., Del Rio Abarca R., Cazenave A. SOLS: A lake database to monitor in the Near Real Time water level and storage variations from remote sensing data. Advances in space research. – 2011. – Т. 47. – №. 9. – С. 1497-1507.
3. Ines A.V., Honda K., Gupta A.D., Droogers P., Clemente R.S. Combining remote sensing-simulation modeling and genetic algorithm optimization to explore water management options in irrigated agriculture. Agricultural water management. – 2006. – Т. 83. – №. 3. – С. 221-232.
4. Feng Q., Liu J., Gong J. Urban flood mapping based on unmanned aerial vehicle remote sensing and random forest classifier – A case of Yuyao, China. Water. – 2015. – Т. 7. – №. 4. – С. 1437-1455.
5. Andres L., Boateng K., Borja-Vega C., Thomas E. A review of in-situ and remote sensing technologies to monitor water and sanitation interventions. Water. – 2018. – Т. 10. – №. 6. – С. 756.
6. Jain S. K., Singh V. P. Water resources systems planning and management. – Elsevier, 2003.
7. Jiang H., Feng M., Zhu Y., Lu N., Huang J., Xiao T. An automated method for extracting rivers and lakes from Landsat imagery. Remote Sensing. – 2014. – Т. 6. – №. 6. – С. 5067-5089.
8. Rundquist D.C., Lawson M.P., Queen L.P., Cerveny R.S. The relationship between summer-season rainfall events and lake-surface area. JAWRA Journal of the American Water Resources Association. – 1987. – Т. 23. – №. 3. – С. 493-508.
9. Lu D., Weng Q. A survey of image classification methods and techniques for improving classification performance. International journal of Remote sensing. – 2007. – Т. 28. – №. 5. – С. 823-870.
10. Otukei J. R., Blaschke T. Land cover change assessment using decision trees, support vector machines and maximum likelihood classification algorithms. International Journal of Applied Earth Observation and Geoinformation. – 2010. – Т. 12. – С. S27-S31.
11. Acharya T. D., Lee D. H., Yang I. T., Lee, J. K. Identification of water bodies in a Landsat 8 OLI image using a J48 decision tree //Sensors. – 2016. – Т. 16. – №. 7. – С. 1075.
12. Olthof I. Mapping seasonal inundation frequency (1985–2016) along the St-John River, New Brunswick, Canada using the Landsat archive. Remote Sensing. – 2017. – Т. 9. – №. 2. – С. 143.
13. Frazier P.S., Page K.J. Water body detection and delineation with Landsat TM data. Photogrammetric engineering and remote sensing. – 2000. – Т. 66. – №. 12. – С. 1461-1468.
14. Bastiaanssen W. G. M. et al. Remote sensing in water resources management: The state of the art. – International Water Management Institute, 1998.
15. Nageswara Rao P. P., Mohankumar A. Cropland inventory in the command area of Krishnarajasagar project using satellite data. Remote sensing. – 1994. – Т. 15. – №. 6. – С. 1295-1305.
16. McFeeters S. K. The use of the Normalized Difference Water Index (NDWI) in the delineation of open water features. International journal of remote sensing. – 1996. – Т. 17. – №. 7. – С. 1425-1432.
17. Xu H. Modification of normalised difference water index (NDWI) to enhance open water features in remotely sensed imagery. International journal of remote sensing. – 2006. – Т. 27. – №. 14. – С. 3025-3033.
18. Feyisa G. L., Meilby H., Fensholt, R., Proud S. R. Automated Water Extraction Index: A new technique for surface water mapping using Landsat imagery. Remote Sensing of Environment. – 2014. – Т. 140. – С. 23-35.
19. Domenikiotis C., Dalezios N. R., Loukas A., Karteris M. Agreement assessment of NOAA/AVHRR NDVI with Landsat TM NDVI for mapping burned forested areas. International Journal of Remote Sensing. – 2002. – Т. 23. – №. 20. – С. 4235-4246.
20. Chen F., Chen X., Van de Voorde T., Roberts D., Jiang, H., Xu W. Open water detection in urban environments using high spatial resolution remote sensing imagery. Remote Sensing of Environment. – 2020. – Т. 242. – С. 111706.
21. Li W., Du Z., Ling F., Zhou D., Wang H., Gui Y., Sun B., Zhang X. A comparison of land surface water mapping using the normalized difference water index from TM, ETM+ and ALI. Remote Sensing. – 2013. – Т. 5. – №. 11. – С. 5530-5549.
22. Du Z., Linghu B., Ling F., Li W., Tian W., Wang H. et al. Estimating surface water area changes using time-series Landsat data in the Qingjiang River Basin, China. Journal of Applied Remote Sensing. – 2012. – Т. 6. – №. 1. – С. 063609.
23. Pan F., Xi X., Wang C. A comparative study of water indices and image classification algorithms for mapping inland surface water bodies using Landsat imagery. Remote Sensing. – 2020. – Т. 12. – №. 10. – С. 1611.
24. Rokni K., Ahmad A., Selamat A., Hazini, S. Water feature extraction and change detection using multitemporal Landsat imagery. Remote sensing. – 2014. – Т. 6. – №. 5. – С. 4173-4189.
25. Huang C., Zan X., Yang X., Zhang S. Surface water change detection using change vector analysis. 2016 IEEE International Geoscience and Remote Sensing Symposium (IGARSS). – IEEE, 2016. – С. 2834-2837.
26. G. Shao, L. Tang, H. Zhang Introducing Image Classification Efficacies IEEE Access, 9 (2021), pp. 134809-134816, 10.1109/ACCESS.2021.3116526
27. EO Browser. Apps.sentinel-hub.com URL: https://apps.sentinel-hub.com/eo-browser (дата звернення 10.01.2022)
28. EarthExplorer. Earthexplorer.usgs.gov. URL: https://earthexplorer.usgs.gov/ (дата звернення 10.01.2022)
29. OneGeology. Portal.onegeology.org URL: http://portal.onegeology.org/ (дата звернення 10.01.2022)
30. QGIS – A Free and Open Source Geographic Information System. Qgis.org. URL: https://www.qgis.org (дата звернення 10.01.2022)
31. Giovanni. The Bridge Between Data and Science. Giovanni.gsfc.nasa.gov. URL: https://giovanni.gsfc.nasa.gov (дата звернення 10.01.2022).