Method of design calculationfor automatic electrohydraulic drive of rotary motion and volume regulation

Authors

  • О.L. Golubenko Volodymyr Dahl East Ukrainian National University
  • О.V. Romanchenko Volodymyr Dahl East Ukrainian National University
  • V.І. Sokolov Volodymyr Dahl East Ukrainian National University
  • О.G. Stepanova Volodymyr Dahl East Ukrainian National University

DOI:

https://doi.org/10.33216/1998-7927-2022-272-2-15-22

Keywords:

mechanical engineering, railway transport, engineering method, electrohydraulic drive, volume regulation, automatic control system, transfer function, dynamic characteristics

Abstract

The article is devoted to the development of automatic electrohydraulic drives fortechnological equipment. The engineering method of design calculation forautomatic electrohydraulic drive of rotary motion and volume regulation ispresented. The engineering method of design calculation allows to evaluate themain parameters and choice drive elements and devices using the maximum loadmoment and hydraulic motor rotation velocity, predict its static and dynamiccharacteristics. The following parameters are accepted as input data for calculationof the hydraulic drive with rotational motion: M max – maximum load moment; n max –maximum rotation frequency; J – reduced inertia moment the rotor. Volumetrichydraulic drive with adjustable pump and unregulated hydraulic motor is the mostcommon. Hydraulic drives with this structure are used in many types of equipmentand provide smooth start-up and stepless regulation for the working body speed ofequipment with a single control element. The working fluid is selected based onthe technical requirements for equipment or recommendations from the technicaldata of the main hydraulic equipment - pump and hydraulic motor, as well astaking into account the mode of operation of electrohydraulic drive processequipment, climatic and temperature conditions. The automatic control system byelectrohydraulic drive is proposed, that taking into account observation noise andstochastic perturbation of the control object. The example of design calculation forthe parameters of automatic electrohydraulic drive for technological equipment forthe following input data has been performed: maximum load moment Mmax =120 N maximum rotation frequency nmax =2100 rpm; reduced inertia moment of therotating parts J=0,8 kg·m2. The possibility of using serially produced axial pistonregulated pump with inclined disk and unregulated hydraulic motor with an inclined washer is shown. Based on the passport data of hydraulic machines, theparameters of the mathematical model for the drive as object of automatic controlare determined. The research of the system dynamic characteristics is carried out.

References

1. Пелевін Л.Є. Гідравліка, гідромашини та гідропневмоа-втоматика/ Л.Є. Пелевін, Д.О. Міщук, В.П. Рашківсь-кий, Є.В. Горбатюк, Г.О. Аржаєв, В.Ф. Красніков. К.: КНУБА, 2015. 340 с.

2. Свешников В.К. Станочные гидроприводы: справочник. Москва: Машиностроение, 2008. 640 с.

3. Krol, O., Sokolov, V., Tsankov, P.: Modeling of vertical spindle head for machining center. Journal of Physics: Con-ference Series 1553 012012 (2020).

4. Krol, O., Sokolov, V.: Modeling of Spindle Node Dynamics Using the Spectral Analysis Method. In: Advances in De-sign, Simulation and Manufacturing III. DSMIE 2020. Lec-ture Notes in Mechanical Engineering, vol. 1, pp. 35-44. Springer, Cham (2020).

5. Krol, O., Porkuian, O., Sokolov, V., Tsankov, P.: Vibration stability of spindle nodes in the zone of tool equipment op-timal parameters. Comptesrendus-del’Acade'miebulgaredesSciences72(11), 1546-1556 (2019).

6. Коваленко А. А., Соколов В.И., Уваров П.Е., Пазин В.В. Основы объемного гидравлического привода строительных и дорожных машин. Луганск: ДонГАСА, 1999. 137 с.

7. Sokolov, V., Porkuian, O., Krol, O., Stepanova, O.: Design Calculation of Automatic Rotary Motion Electrohydraulic Drive for Technological Equipment. In: Advances in Design, Simulation and Manufacturing IV. DSMIE 2021. Lecture Notes in Mechanical Engineering, vol. 1, pp. 133-142. Springer, Cham (2021).

8. Krol, O., Sokolov, V.: Research of modified gear drive for multioperational machine with increased load capaci-ty. Diagnostyka 21(3), 87-93 (2020).

9. Krol, O., Sokolov, V.: Research of toothed belt transmission with arched teeth. Diagnostyka 21(4), 15-22 (2020).

10. Sokolov, V., Porkuian, O., Krol, O., Baturin, Y.: Design Calculation of Electrohydraulic Servo Drive for Technol-ogical Equipment. In: Advances in Design, Simulation and Manufacturing III. DSMIE 2020. Lecture Notes in Mechanical Engineering, vol. 1, pp. 75-84. Springer, Cham (2020).

11. Sokolov, V.: Dynamics of Positioning Process for Hydrau-lic Drive Output Link by Distributor with Closed Center. In: Proceedings of the 7th International Conference on In-dustrial Engineering (ICIE 2021). Lecture Notes in Me-chanical Engineering. Springer, Cham (2022).

12. Соколов В.І., Кроль О.С., Єпіфанова О.В. Дифузійні процеси в системах вентиляції. – Сєвєродонецьк: СНУ ім. В. Даля. 2018. 148 с.

13. Sokolov, V.: Diffusion of Circular Source in the Channels of Ventilation Systems. In.: Advances in Engineering Re-search and Application. ICERA 2018. Lecture Notes in Networks and Systems, vol. 63, pp. 278-283. Springer, Cham (2019).

14. Sokolov, V.: Increased Measurement Accuracy of Average Velocity for Turbulent Flows in Channels of Ventilation Systems. In: Proceedings of the 6th International Confe-rence on Industrial Engineering (ICIE 2020). Lecture Notes in Mechanical Engineering, vol. 2, pp. 1182-1190. Springer, Cham (2021).

15. Sokolov, V.: Criteria Analysis of Diffusion Processes in Channels of Industrial Ventilation Systems. In: Proceed-ings of the 7th International Conference on Industrial En-gineering (ICIE 2021). Lecture Notes in Mechanical En-gineering. Springer, Cham (2022).

16. Соколов В.І., Кроль О.С., Єпіфанова О.В. Гідравліка. Сєвєродонецьк: СНУ ім. В. Даля, 2017. 160 с.

17. Коваленко А.А., Соколов В.И., Дымнич А.Х., Уваров П.Е. Основы технической механики жидкостей и газов: учебное пособие для вузов. Луганск: ВУГУ, 1998. 272 с.

18. Sokolov, V.: Transfer functions for shearing stress in non-stationary fluid friction. In: Proceedings of the 5th Interna-tional Conference on Industrial Engineering (ICIE 2019). ICIE 2019. Lecture Notes in Mechanical Engineering, vol. 1, pp. 707-715. Springer, Cham (2020).

19. Sokolov, V.: Hydrodynamics of Flow in a Flat Slot with Boundary Change of Viscosity. In: Proceedings of the 6th International Conference on Industrial Engineering (ICIE 2020). Lecture Notes in Mechanical Engineering, vol. 2, pp. 1172-1181. Springer, Cham (2021).

20. Соколов В.І., Степанова О.Г., Батурін Є.О. Досліджен-ня динамічних характеристик електрогідравлічного приводу технологічного обладнання. Вісн. Східноукр. націон. ун-ту ім. В. Даля. 2019. № 1(249). С. 55-60.

21. Sokolov, V., Krol, O., Romanchenko, O., Kharlamov, Y., Baturin, Y.: Mathematical model for dynamic characteris-tics of automatic electrohydraulic drive for technological equipment. Journal of Physics: Conference Series 1553 012013 (2020).

22. Sokolov, V., Krol, O., Stepanova, O., Tsankov, P.: Dy-namic characteristics of rotary motion electrohydraulic drive with volume regulation. Comptes rendus de l’Acade'mie bulgare des Sciences73(5), 691-702 (2020).

23. Sokolov V., Azarenko N., Sokolova Ya. Simulation of the power unit of the automatic electrohydraulic drive with volume regulation // TEKA Commission of Motorization and Energetic in Agriculture. Vol. 12. N 4. 2012. Lublin, Poland. pp. 268 - 273.

24. Соколов В.І. Розробка та дослідження системи автома-тичного керування технологічним обладнанням з гід-роприводом обертального руху / В.І. Соколов, О.Г. Степанова, Я.І. Степчук, Д.Ю. Кавун, М.К. Ткаченко // Вісн. Східноукр. націон. ун-ту ім. В. Даля. 2017. № 7 (237). С. 63-70.

25. Sokolova, Y., Tavanuk, T., Greshnoy, D.: Linear modeling of the electrohydraulic watching drive. TEKA Comm. Mot. Energ. Agric. XIB, 167–176 (2011).

26. Sokolov, V., Krol, O., Stepanova, O.: Automatic Control System for Electrohydraulic Drive of Production Equip-ment. 2018 International Russian Automation Conference (RusAutoCon). IEEE (2018).

27. Sokolov, V., Krol, O., Baturin, Y.: Dynamics Research and Automatic Control of Technological Equipment with Electrohydraulic Drive. 2019 International Russian Auto-mation Conference (RusAutoCon). IEEE (2019).

28. Sokolov, V., Rasskazova, Y.: Automation of control processes of technological equipment with rotary hydraulic drive. Eastern-European Journal of Enterprise Technologies 2(2(80)), 44–50 (2016).

Published

2022-09-15