Criteria analysis of diffusion processes in channels of ventilation systems
DOI:
https://doi.org/10.33216/1998-7927-2022-272-2-62-66Keywords:
ventilation systems, turbulent flow, Diffusion process, Reynolds number, diffusion Peclet number, Schmidt numberAbstract
The process of turbulent diffusionof gas impurities in the channels of the industrial ventilation systems is considered. The stationary diffusion is described by the equation for turbulent diffusion of impurity in homogeneous incompressible medium. It is believed that the actual concentration at each point of the space occupied by the turbulent flow, undergoes random changes in time (pulsating, fluctuating). When solving practical problems about the motion of impurity particles from the actual characteristic, the transition to the average concentration value is applied. In the case of established turbulent motion and stationary external conditions, the time averaging introduced by Reynolds is used.According to the Fick-Boussinesq hypothesis, the averaged values of the multiplications of pulsating velocity components and concentration are accepted proportional to the averaged concentration gradient. The assumption is substantiated that for the operating modes of the industrial ventilation systems, the molecular diffusion coefficient is much lower than the turbulent diffusion coefficient. For the turbulent diffusion coefficient, the well-known empirical dependence for round pipes is used. The hydraulic resistance coefficient to friction under turbulent flow conditions is determined by the universal Altshul formula. To study diffusion processes in the gas flows of the ventilation systems, the equation of turbulent diffusion is reduced to dimensionless form. The dimensionless criteria are introduced into consideration: the Reynolds number, the Schmidt number (or the diffusion Prandtl number), and the diffusion Peclet number. The analysis of the criterion relations for diffusion processes in the cylindrical channels of the ventilation systems is carried out. The dependence of the diffusion Peclet number from the Reynolds number showed that for big values of relative roughness, the Peclet diffusion number does not depend from the Reynolds number. The presence of the self-similar zone in diffusion processes is shown, when the path length for equalizing the impurity concentration will not depend from the gas flow parameters.
References
1. Елинский И.И. Вентиляция иотопление гальванических цехов машиностроительных предприятий. М.: Машиностроение, 1989. 152 с.
2. Krol, O., Sokolov, V., Tsankov, P.: Modeling of vertical spindle head for machining center. Journal of Physics: Conference Series 1553 012012 (2020).
3. Krol, O., Sokolov, V.: Modeling of Spindle Node Dynam-ics Using the Spectral Analysis Method. In: Advances in Design, Simulation and Manufacturing III. DSMIE 2020. Lecture Notes in Mechanical Engineering, vol. 1, pp. 35-44. Springer, Cham (2020).
4. Krol, O., Sokolov, V.: Research of modified gear drive for multioperational machine with increased load capacity. Diagnostyka 21(3), 87-93 (2020).
5. Krol, O., Sokolov, V.: Research of toothed belt transmis-sion with arched teeth. Diagnostyka 21(4), 15-22 (2020).
6. Свистунов В.М., Пушняков Н.К. Отопление, вентиля-ция и кондиционирование воздуха объектов агропро-мышленного комплекса и жилищно-коммунального хозяйства. СПб.: Политехника, 2007. 423 с.
7. Krol, O., Porkuian, O., Sokolov, V., Tsankov, P.: Vibra-tion stability of spindle nodes in the zone of tool equipment optimal parameters. Comptes rendus de l’Acade'mie bulgare des Sciences72(11), 1546-1556 (2019).
8. Sokolov V., Azarenko N., Sokolova Ya. Simulation of the power unit of the automatic electrohydraulic drive with volume regulation. TEKA Commission of Motorization and Energetic in Agriculture. 2012. Vol. 12. No 4. P. 268 - 273.
9. Sokolov, V., Porkuian, O., Krol, O., Baturin, Y.: Design Calculation of Electrohydraulic Servo Drive for Technol-ogical Equipment. In: Advances in Design, Simulation and Manufacturing III. DSMIE 2020. Lecture Notes in Me-chanical Engineering, vol. 1, pp. 75-84. Springer, Cham (2020).
10. Sokolov, V., Porkuian, O., Krol, O., Stepanova, O.: Design Calculation of Automatic Rotary Motion Electrohydraulic Drive for Technological Equipment. In: Advances in Design, Simulation and Manufacturing IV. DSMIE 2021. Lecture Notes in Mechanical Engineering, vol. 1, pp. 133-142. Springer, Cham (2021).
11. Ананьев В.А., Балуева Л.Н., Гальперин А.Д. и др. Сис-темы вентиляции и кондиционирования. Теория и практика. М.: Евроклимат, 2001. 416 с.
12. Коваленко А.А., Соколов В.И., Дымнич А.Х., Уваров П.Е. Основы технической механики жидкостей и газов: Учебное пособие для вузов. Луганск: ВУГУ, 1998. 272 с.
13. Sokolov, V., Krol, O., Stepanova, O., Tsankov, P.: Dy-namic characteristics of rotary motion electrohydraulic drive with volume regulation. Comptes rendus de l’Acade'mie bulgare des Sciences73(5), 691-702 (2020). DOI: https:// doi.org/ 10.7546/CRABS.2020.05.12.
14. Харламов Ю.А., Соколов В.И., Кроль О.С. Трибологи-ческая надежность металлорежущих станков. Северо-донецк: ВНУ им. В. Даля, 2017. 320 с.
15. Sokolov, V.: Dynamics of Positioning Process for Hydrau-lic Drive Output Link by Distributor with Closed Center. In: Proceedings of the 7th International Conference on In-dustrial Engineering (ICIE 2021). Lecture Notes in Me-chanical Engineering. Springer, Cham (2022).
16. Беккер А. Системы вентиляции. М.: Техносфера, Ев-роклимат, 2005. 232 с.
17. Соколов В.І., Кроль О.С., Єпіфанова О.В. Гідравліка. Сєвєродонецьк: СНУ ім. В. Даля, 2017. 160 с.
18. Sokolov, V.: Hydrodynamics of flow in flat slot with boundary change of viscosity. In: Proceedings of the 6th International Conference on Industrial Engineering (ICIE 2020). Lecture Notes in Mechanical Engineering, vol. 2, pp. 1172-1181. Springer, Cham (2021).
19. Sokolov, V.: Transfer functions for shearing stress in non-stationary fluid friction. In: Proceedings of the 5th Interna-tional Conference on Industrial Engineering (ICIE 2019). ICIE 2019. Lecture Notes in Mechanical Engineering, vol. 1, pp. 707-715. Springer, Cham (2020).
20. Андрийчук Н.Д., Соколов В.И., Коваленко А.А., Дя-дичев К.М. Пути совершенствования систем тепло-снабжения. Луганск: ВНУ им. В. Даля, 2003. 244 с.
21. Соколов В.І., Кроль О.С., Єпіфанова О.В. Дифузійні процеси в системах вентиляції. Сєвєродонецьк: СНУ ім. В. Даля. 2018. 148 с.
22. Sokolov, V.: Criteria Analysis of Diffusion Processes in Channels of Industrial Ventilation Systems. In: Proceedings of the 7th International Conference on Industrial En-gineering (ICIE 2021). Lecture Notes in Mechanical Engi-neering. Springer, Cham (2022).
23. Андрийчук Н.Д., Иващенко Е.А., Коваленко А.А., Со-колов В.И. Термодинамика для инженеров-строителей. Луганск: ВНУ им. В. Даля, 2005. 304 с.
24. Sokolov, V., Krol, O.: Time Characteristics of Initial Stages for Aerosols Diffusion in Channels of Ventilation Systems. 2020 International Multi-Conference on Industrial Engineering and Modern Technologies (FarEastCon), pp. 1-6. IEEE (2020).
25. Sokolov, V.: Increase measurement accuracy of average velocity for turbulent flows in channels of ventilation sys-tems. In: Proceedings of the 6th International Conference on Industrial Engineering (ICIE 2020). Lecture Notes in Mechanical Engineering. Springer, vol. 2, pp. 1182-1190, Cham (2021).
26. Соколов В.И., Коваленко А.А., Калюжный Г.С. и др. Инженерные задачи диффузии примеси в потоке. Лу-ганск: ВНУ, 2000. 168 с.
27. Соколов В.И. Аэродинамика газовых потоков в кана-лах сложных вентиляционных систем. Луганск: ВУГУ, 1999. 200 с.
28. Sokolov, V.: Diffusion of Circular Source in the Channels of Ventilation Systems. In.: Advances in Engineering Re-search and Application. ICERA 2018. Lecture Notes in Networks and Systems, vol. 63, pp. 278-283. Springer, Cham (2019).
29. Sokolov, V., Krol, O.: Measurement of Impurity Concen-tration in Turbulent Flows of Ventilation Systems Chan-nels. Journal of Physics: Conference Series 2096 012102 (2021).