Calculation of shearing stress for nonstationary fluid friction

Authors

  • V.І. Sokolov Volodymyr Dahl East Ukrainian National University
  • Y.O. Baturin Volodymyr Dahl East Ukrainian National University
  • E.М. Chernikova Volodymyr Dahl East Ukrainian National University

DOI:

https://doi.org/10.33216/1998-7927-2022-272-2-67-81

Keywords:

Fluid friction, shearing stress, equation of motion, Laplace transform, transfer function

Abstract

The important parameter in the calculation of hydromechanical processes is the force of viscous fluid friction, which is characterized by shearing stress arising in the working environment, which comes into contact with the surface of the moving element of the actuator, control, distribution or auxiliary hydraulic device. In the presence of a gap between the surfaces of the elements, the shearing stresses occur during the relative motion of these surfaces and the movement of the medium under the influence of the pressure drop. Traditional approaches to the construction of mathematical models of nonstationary hydromechanical processes are largely based on the fact that real flows are replaced by a sequence of time-varying flows with a quasi-stationary distribution of hydrodynamic quantities over the section. This allows you to enter into the calculation of the coefficients and characteristics obtained for stationary flows.In fact, the structure of the nonstationary flow differs from the quasi-stationary one, and it is not always known how and under what conditions such a difference can affect the change of hydrodynamic characteristics. Therefore, the nonstationary plane laminar motion of incompressible fluid in the gap between the moving and a fixed elements in the Cartesian coordinate system is considered. The solution of the equation of motion in partial derivatives is fulfilled using the Laplace transform. The dependence in the operator form for the shearing stress for nonstationary fluid friction is obtained. The transfer functions for the shearing stress of the velocity of the moving element and the pressure gradient are determined. Based on the analysis of amplitude-frequency characteristics, the boundaries of a quasi-stationary approach are established for calculating the forces of nonstationary viscous friction on the moving elements of hydraulic devices. The solution of the equation of motion in partial derivatives is fulfilled using the Laplace transform. The approximate transfer functions for the nonstationary shearing stress are obtained, which allow to establish the connection between the originals in the form of ordinary linear differential equations. The dependence for the shearing stress under nonstationary fluid friction is proposed, which takes into account the moving surface acceleration, which makes it possible to increase the accuracy of calculating the dynamic characteristics for hydraulic systems.

References

1. Попов Д. Н. Механика гидро– и пневмоприводов: учеб. для вузов. Москва: МГТУ им. Н. Э. Баумана, 2005. 320 с.

2. Петраков Ю.В. Автоматичне управління процесами обробки матеріалів різанням: навчальний посібник. Київ: УкрНДІАТ, 2003. 383 с.

3. Коваленко А. А., Соколов В.И., Уваров П.Е., Пазин В.В. Основы объемного гидравлического привода строительных и дорожных машин. Луганск: ДонГАСА, 1999. 137 с.

4. Свешников В.К. Станочные гидроприводы: справоч-ник. Москва: Машиностроение, 2008. 640 с.

5. Rydberg K.-E. Hydraulic Servo Systems: Dynamic Properties and Control. Linköping University Electronic Press, Linköping, 2016.

6. Sokolov, V., Porkuian, O., Krol, O., Baturin, Y.: Design Calculation of Electrohydraulic Servo Drive for Technological Equipment. In: Advances in Design, Simulation and Manufacturing III. DSMIE 2020. Lecture Notes in Mechanical Engineering, vol. 1, pp. 75-84. Springer, Cham (2020).

7. Sokolov, V., Porkuian, O., Krol, O., Stepanova, O.: Design Calculation of Automatic Rotary Motion Electrohydraulic Drive for Technological Equipment. In: Advances in Design, Simulation and Manufacturing IV. DSMIE 2021. Lecture Notes in Mechanical Engineering, vol. 1, pp. 133-142. Springer, Cham (2021).

8. Федорец В.А., Педченко М.Н., Пичко А.Ф., Пересадь-ко Ю.В., Лысенко В.С. Гидроприводы и гидропневмо-автоматика станков. Киев: Высш. школа, 1987. 375 с.

9. Навроцкий К.Л. Теория и проектирование гидро- и пневмоприводов. Москва: Машиностроение, 1991. 384 с.

10. Sokolov, V., Krol, O., Stepanova, O., Tsankov, P.: Dynamic characteristics of rotary motion electrohydraulic drive with volume regulation. Comptes rendus de l’Acade'mie bulgare des Sciences 73(5), 691-702 (2020).

11. Коваленко А.А., Соколов В.И., Дымнич А.Х., Уваров П.Е. Основы технической механики жидкостей и газов: учебное пособие для вузов. Луганск: ВУГУ, 1998. 272 с.

12. Sokolov, V., Rasskazova, Y.: Automation of control processes of technological equipment with rotary hydraulic drive. Eastern-European Journal of Enterprise Technologies 2(2(80)), 44–50 (2016).

13. Sokolov, V., Krol, O., Romanchenko, O., Kharlamov, Y., Baturin, Y.: Mathematical model for dynamic characteristics of automatic electrohydraulic drive for technological equipment. Journal of Physics: Conference Series 1553 012013 (2020).

14. Sokolov V., Azarenko N., Sokolova Ya. Simulation of the power unit of the automatic electrohydraulic drive with volume regulation // TEKA Commission of Motorization and Energetic in Agriculture. Vol. 12. N 4. 2012. Lublin, Poland. pp. 268 - 273.

15. Sokolova, Y., Tavanuk, T., Greshnoy, D.: Linear modeling of the electrohydraulic watching drive. TEKA Comm. Mot. Energ. Agric. XIB, 167–176 (2011).

16. Попов Д.Н. Динамика и регулирование гидро- и пнев-мосистем. Москва: Машиностроение, 1987. 464 с.

17. Соколов В.І. Розробка та дослідження системи авто-матичного керування технологічним обладнанням з гідроприводом обертального руху / В.І. Соколов, О.Г. Степанова, Я.І. Степчук, Д.Ю. Кавун, М.К. Ткаченко // Вісн. Східноукр. націон. ун-ту ім. В. Даля. 2017. № 7 (237). С. 63-70.

18. Соколов В.І., Степанова О.Г., Батурін Є.О. Дослі-дження динамічних характеристик електрогідравліч-ного приводу технологічного обладнання. Вісн. Схід-ноукр. націон. ун-ту ім. В. Даля. 2019. № 1(249). С. 55-60.

19. Лойцянский Л.Г. Механика жидкости и газа. Москва: Дорфа, 2003. 840 с.

20. Sokolov, V.: Diffusion of Circular Source in the Channels of Ventilation Systems. In.: Advances in Engineering Research and Application. ICERA 2018. Lecture Notes in Networks and Systems, vol. 63, pp. 278-283. Springer, Cham (2019).

21. Sokolov, V.: Transfer functions for shearing stress in nonstationary fluid friction. In: Proceedings of the 5th International Conference on Industrial Engineering (ICIE 2019). ICIE 2019. Lecture Notes in Mechanical Engineering, vol. 1, pp. 707-715. Springer, Cham (2020).

22. Соколов В.І., Кроль О.С., Єпіфанова О.В. Гідравліка. Сєвєродонецьк: СНУ ім. В. Даля, 2017. 160 с.

23. Sokolov, V.: Dynamics of Positioning Process for Hydrau-lic Drive Output Link by Distributor with Closed Center. In: Proceedings of the 7th International Conference on In-dustrial Engineering (ICIE 2021). ICIE 2021. Lecture Notes in Mechanical Engineering, vol. 2, pp. 715-723. Springer, Cham (2022).

24. Емцев Б.Т. Техническая гидромеханика. Москва: Машиностроение, 1987. 440 с.

25. Sokolov, V.: Hydrodynamics of Flow in a Flat Slot with Boundary Change of Viscosity. In: Proceedings of the 6th International Conference on Industrial Engineering (ICIE 2020). Lecture Notes in Mechanical Engineering, vol. 2, pp. 1172-1181. Springer, Cham (2021).

Published

2022-09-15