Influence of the measuring instrument on the characteristics of the vortex chamber pump

Authors

  • A.S. Rogovyi National Technical University Kharkiv Polytechnic Institute, Kharkiv, Ukraine
  • А.О. Neskorozhenyi Kharkiv National Automobile and Highway University, Kharkiv, Ukraine

DOI:

https://doi.org/10.33216/1998-7927-2021-268-4-88-93

Keywords:

vortex chamber pump, measuring instrument, numerical simulation, characteristics, velocity measurement

Abstract

Perturbation of the flow by measuring instruments forces researchers to choose optical research methods. However, these methods significantly increase the cost of experimental research, due to the high cost of optical measuring equipment.

When conducting verification, it is important to match the flow patterns obtained experimentally and numerically, especially if the impact of measuring equipment on the flow is significant. Therefore, the task of defining the measuring tool influence on the flow parameters in the hydraulic machine becomes relevant. The authors of this paper have been researching new jet pumps called vortex chamber pumps for a long time. These pumps allow you to take advantage of jet technology andcentrifugal pumps based on the rotation of the flow inside the vortex chamber. Flows in the vortex chambers are one of the most difficult flows in hydroaerodynamics, so the influence of measuring instruments on the flow can be very significant. In this paper, based on the numerical solution of Reynolds equations, a comparison of flow patterns in a vortex pump with a measuring instrument of different diameters and without it is conducted.

The mathematical model consisted of Reynolds-averaged Navier-Stokes equations, SST (Shear Stress Transport) equations of the turbulence model, continuity equations for incompressible fluid flow. The software was verified by comparing the results of experiments with the results of numerical simulations.

Measurements made by means of holes on the end caps of the vortex chamber have a negligible effect on the energy performance of the pump within 5% in a wide range of tool relative diameter changes.

The tool location at the side surface of the vortex chamber is not allowed due to a significant deterioration of the vortex chamber pumps energy performance, which indicates significant measurement errors.

Reducing the tool relative diameter reduces the perturbation of the flow, but in order to minimize the impact of the tool it is necessary to guarantee the tool relative diameter less than 0.1.

The installation of the measuring tool in the end cover of the vortex chamber leads to a decrease in the flow rate sucked by the pump through the lower axial channel.

References

1. Загорулько А.В. Програмний комплекс ANSYS в інженерних задачах: Навчальний посібник. Суми: Вид-во СумДУ, 2008. 201 с.

2. Tu Jiyuan, Guan Heng Yeoh, Chaoqun Liu. Computational fluid dynamics: a practical approach. Butterworth-Heinemann, 2018. 478 p.

3. Повх И.Л. Аэродинамический эксперимент в машиностроении. Л.: Машиностроение, 1974. 480 c.

4. Voskoboinick V.A., Turick V.N., Voskoboinyk O.A., Voskoboinick A.V., Tereshchenko I.A. Influence of the deep spherical dimple on the pressure field under the turbulent boundary layer. In International Conference on Computer Science, Engineering and Education Applications, 2018. pp. 23-32.

5. Evdokimov O.A., Guryanov A.I., Mikhailov A.S., Veretennikov S.V., Stepanov E.G. Experimental investigation of burning of pulverized peat in a bidirectional vortex combustor. Thermal Science and Engineering Progress, 2020. Vol. 18, pp. 100565.

6. Коваленко А.О., Сьомін Д.О., Роговий А.С. Планування та обробка результатів випробувань гідропневмосистем: Навчальний посібник. Луганськ: Вид-во СНУ ім. В. Даля, 2011. 216 с.

7. Pereira F.S., Eça L., Vaz G., Girimaji S.S. (On the simulation of the flow around a circular cylinder at Re= 140,000. International Journal of Heat and Fluid Flow, 2019. Vol. 76, pp. 40-56.

8. Grioni M., Elaskar S., Mirasso A.E. Scale-adaptive simulation of flow around a circular cylinder near a plane boundary. Journal of Applied Fluid Mechanics, 2018, Vol. 11.6, pp. 1477-1488.

9. Zhou Xiao, JinJun Wang, Ye Hu. Experimental investigation on the flow around a circular cylinder with upstream splitter plate. Journal of Visualization, 2019. Vol. 22.4, pp. 683-695.

10. Khalatov A.A., Kovalenko G.V., Meyris A.J. Heat transfer at the cross flow of a tube with an artificial asymmetry. Thermophysics and Thermal Power Engineering, 2017, Vol. 39.4, pp. 27-32.

11. Rogovyi A.S. Verification of Fluid Flow Calculation in Vortex Chamber Superchargers. Автомобильный транспорт. 2016. Вып. 39. С. 39-46.

12. Роговий, А. С. Концепція створення вихорокамерних нагнітачів та принципи побудови систем на їх основі. Вісник Східноукраїнського національного університету імені Володимира Даля, 2017. No. 233, C. 168-173.

13. Evdokimov O.A. The influence of the ratio of the diameters of the vortexes and mixing chambers of a vortex ejector on its own characteristics. In AIP Conference Proceedings, 2020. Vol. 2211(1), 2020060001.

14. Сьомін Д.О., Роговий А.С., Левашов А.М. Вплив закручення потоку, що перекачується, на енергетичні характеристики вихрекамерних насосів. Вісник Національного технічного університету ХПІ. Серія: Гідравлічні машини та гідроагрегати, 2016. (20), C. 68-71.

15. Роговой А.С. Применение вихрекамерных нагнетателей в гидро- и пневмотранспортных системах. Вісник НТУУ "КПІ". Серія Машинобудування, 2016. № 3(78). С.65-70.

16. Сьомін Д.О., Роговий А.С. Вихорокамерні нагнітачі: монографія. Харків, 2017. 204 с.

17. Rogovyi A., Korohodskyi V., Khovanskyi S., Hrechka I., Medvediev Y. Optimal design of vortex chamber pump. In Journal of Physics: Conference Series, 2021. Vol. 1741 (1), p. 012018).

18. Rogovyi A., Korohodskyi V., Medvediev Y. Influence of Bingham fluid viscosity on energy performances of a vortex chamber pump. Energy, 2021. Vol. 218, pp. 119432.

19. Smirnov P. E., Menter F. R. Sensitization of the SST turbulence model to rotation and curvature by applying the Spalart–Shur correction term. Journal of Turbomachinery, 2009, vol. 131, no. 4. 041010. pp. 1-8.

20. Alahmadi Y.H., Nowakowski A.F. Modified shear stress transport model with curvature correction for the prediction of swirling flow in a cyclone separator. Chemical Engineering Science. 2016. Vol. 147. pp. 150-165.

21. Huang S., Wei Y., Guo C., Kang W. Numerical Simulation and Performance Prediction of Centrifugal Pump’s Full Flow Field Based on OpenFOAM. Processes, 2019. Vol. 7(9), 605. pp. 1-11

22. Besagni G., Inzoli F. Computational fluid-dynamics modeling of supersonic ejectors: Screening of turbulence modeling approaches. Applied Thermal Engineering. 2016. Vol. 117. pp. 122-144.

23. Han X., Sagaut P., Lucor D. On sensitivity of RANS simulations to uncertain turbulent inflow conditions, Comput. Fluids. 2012. Vol. 61. pp. 2-5.

24. Evdokimov, O. A., Piralishvili, S. A., Veretennikov, S. V., Guryanov, A. I. CFD Simulation of a Vortex Ejector for Use in Vacuum Applications. In Journal of Physics: Conference Series. 2018. Vol. 1128, No. 1, P. 012127.

Published

2022-11-09