Research of loading of the gondola car load-bearing structure when interacting with the grapple loader
DOI:
https://doi.org/10.33216/1998-7927-2021-268-4-94-99Keywords:
transport mechanics, gondola car, load-bearing structure, strength, structure load, preservationAbstract
Ensuring the efficiency of the transport process in international traffic necessitates the creation of combined interactions between the individual components of the transport industry. The most prioritized components of transport today are rail and water ones.
The study of operating conditions of wagons in international rail and water connection showed that there is damage to the elements of the load-bearing structure of the body, due to the action of loadings on them that exceed the normative values.
In the materials of the article, the determination of loading of the load-bearing structure of the gondola car when being unloaded with a grapple loader is carried out. It is established that the maximum equivalent stresses in the load-bearing structure of the gondola car under shock loading by the grapple loader are 987.7 MPa, which exceed the allowable values for the steel grade of the metal structure of the body.
To ensure the strength of the cant-rail of the load-bearing structure of the gondola car in the event of impact interaction with the grapple loader, it is proposed to introduce a viscoelastic material into it, such as elastomer. It is proposed to use an elastomer with a viscous resistance coefficient of 0.3 kN∙s/m and a natural oscillation frequency of 10 Hz, because such dynamic parameters of the elastomer are the most optimal in terms of providing conditions for dynamic loading of the gondola car body. To substantiate the proposed solution, the calculation of strength of the load-bearing structure of the gondola car is carried out. In the calculation, the finite element method implemented in the SolidWorks Simulation software package is used. It is taken into account that the weight of the grapple loader is 1800 kg, and the speed of lowering onto the cant-rail is 0.36 m/s. The results of the calculation confirmed the feasibility of the proposed measure. The maximum equivalent stresses in the load-bearing structure do not exceed the allowable values and are about 320 MPa, the maximum displacement is about 20 mm.
The conducted research will promote reduction of damages of load-bearing structures of gondola cars, as well as increase of efficiency of their operation.
References
1. Pavol Šťastniak. Investigation of strength conditions of the new wagon prototype type Zans / Pavol Šťastniak, Marián Moravčík, Lukáš Smetanka // MATEC Web of Conferences. – 2019. – Vol. 254. 02037. https://doi.org/10.1051/matecconf/201925402037
2. Svetoslav Slavchev. Static strength analysis of the body of a wagon, series Zans / Svetoslav Slavchev, Valeri Stoilov, S. Purgic // Journal of the Balkan Tribological Association. – 2015. – Vol. 21(1). P. 49-57.
3. Harak S. S. Structural Dynamic Analysis of Freight Railway Wagon Using Finite Element Method / Harak S. S., Sharma S. C., Harsha S. P. // Procedia Materials Science. – 2014. – Vol. 6. P. 1891-1898.
4. Krason W. FE numerical tests of railway wagon for intermodal transport according to PN-EU standards / Krason W., Niezgoda T. // Bulletin of the Polish Academy of Sciences technical sciences. – 2014. – Vol. 62, No. 4. P. 843 – 851. DOI: 10.2478/bpasts-2014-0093 https://journals.pan.pl/Content/84047/PDF/28_paper.pdf
5. Недужа Л. О. Теоретичні та експериментальні дослідження міцнісних якостей хребтової балки вантажного вагона / Недужа Л. О., Швець А. О. // Наука та прогрес транспорту. Вісник Дніпропетровського національного університету залізничного транспорту. – 2018. – № 1 (73). P. 131 – 147. doi: 10.15802/stp2018/123457
6. Ловська, А. О. Особливості моделювання динамічної навантаженості вагона-платформи зчленованого типу з контейнерами / А. О. Ловська // Вісник наукових праць СНУ ім. В. Даля. – 2017. – №4 (234). – C. 138 – 145.
7. ДСТУ ГОСТ 22235:2015 Вагоны грузовые магистральных железных дорог колеи 1520 мм. Общие требования по обеспечению сохранности при производстве погрузочно-разгрузочных и маневровых работ (ГОСТ 22235-2010, IDT) [Действителен от 2016-02-01]. 2016.
8. Fomin, O.Experimental confirmation of the theory of implementation of the coupled design of center girder of the hopper wagons for iron ore pellets / O. Fomin, I. Kulbovsky, E. Sorochinska, S. Sapronova, O. Bambura // Eastern-European Journal of Enterprise Technologies. 2017. Vol. 5, Issue 1 (89). – P. 11–19. doi: 10.15587/1729-4061
9. Ловська, А. О. Дослідження міцності несучої конструкції контейнера-цистерни, розміщеного на вагоні-платформі при маневровому співударянні / А. О. Ловська // Збірник наукових праць ДЕТУТ: Серія «Транспортні системи і технології». – 2016. – Вип. 28. – C. 90 – 98.
10. Fomin, O.Determining strength indicators for the bearing structure of a covered wagon's body made from round pipes when transported by a railroad ferry / O. Fomin, A. Lovska, V. Masliyev, A. Tsymbaliuk, O. Burlutski // Eastern-EuropeanJournalofEnterpriseTechnologies.2019. Vol. 7, Issue 1 (97). – P. 33–40. doi: 10.15587/1729-4061.2019.154282
11. ДСТУ 7598:2014. Вагони вантажні. Загальні вимоги до розрахунків та проектування нових і модернізованих вагонів колії 1520 мм (несамохідних). [Чинний від 2015-07-01]. Київ, 2015. 250 с.
12. ГОСТ 33211-2014. Вагоны грузовые. Требования к прочности и динамическим качествам. [Действителенот 2016-07-01]. Москва, 2016. 54 с.