Loss of pressure during the flow of electric conductive liquid bylocal minor energy losses of the pipeline
DOI:
https://doi.org/10.33216/1998-7927-2021-269-5-69-75Keywords:
electric conductive liquid, sudden enlargement, sudden contraction, numerical calculation, magnetohydrodynamicsAbstract
Today in many industries there is a need to pump electrically conductive fluids. For electrically conductive fluids, such a number of experimental studies has not yet been conducted, in addition, the dependencies are complicated by the influence of the magnetic field and the need to take into account their magnitude.
The complexity of mathematical analytical studies in magnetic hydrodynamics arises due to the simultaneous modeling of fluid motion and Maxwell's electrodynamic equations. On the other hand, experimental studies are valuable and are conducted to test the operation of devices. The practical use of conductive fluids in industry is limited by the lack of information on energy losses during the movement in the pipeline, which occurs due to the fact that such losses cannot be calculated analytically.
The aim of the paper is to determine the dependences of pressure losses during the flow of conductive fluid by local minor losses in the pipeline, such as: sudden enlargement and sudden contraction.
The mathematical model consisted of Reynolds-averaged Navier-Stokes equations, SST (Shear Stress Transport) equations of the turbulence model, continuity equations and Maxwell's equations for incompressible fluid flow.
The software was verified by comparing the results of experiments with the results of numerical simulations. The action of the magnetic field leads to a decrease in the average and maximum velocities, to an increase in the velocity in the boundary layer for the flow of conductive fluid in a sudden enlargement. In contrast to sudden contraction, in sudden enlargement it is possible to observe a difference in flow patterns under the action of a transverse magnetic field. Both for the sudden contraction and for the sudden enlargement, the dependences of the relative losses of total pressure on the Hartmann number have a quadratic character.
There is a complete coincidence of the curves for the longitudinal action of the magnetic induction vector. The action of the transverse vector of magnetic induction increases the pressure loss by an order of magnitude at small Reynolds numbers. Increasing the Reynolds numbers to the values of the developed turbulent flow eliminates the effect of the magnetic field.
References
1. Sabu A.S., Mathew A., Neethu T.S., George K.A. Statistical analysis of MHD convective ferro-nanofluid flow through an inclined channel with hall current, heat source and soret effect. Thermal Science and Engineering Progress, 2021. 22, pp. 100816.
2. Nijhawan P., Singla M.K., Gupta J. A Proposed Hybrid Model for Electric Power Generation: A Case Study of Rajasthan, India. IETE Journal of Research,2021. pp. 1-11.
3. Frank M. Visual analysis of two-dimensional magnetohydrodynamics.Phys.Fluids, 2001. vol.13, pp. 2287-2295.
4. Gedik E., Kurt H., Recebli Z. CFD simulation of magnetohydrodynamic flow of a liquid-metal galinstan fluid in circular pipes. Fluid Dynamics and Materials Processing, 2013. 9(1), pp. 23-33.
5. Attia H.A., Ahmed M.E. Circular pipe MHD flow of a dusty Bingham fluid. Journal of Applied Science and Engineering, 2005. 8(4), pp. 257-265.
6. Сёмин Д.А., Роговой А.С. Влияние типа и размера расчетных сеток на точность расчета течений в вихрекамерных нагнетателях. Вісник Національного технічного університету «ХПІ». Збірник наукових праць. Серія: Гідравлічні машини та гідроагрегати. Харків: НТУ «ХПІ». 2016. № 41 (1213). С. 70-77.
7. Сёмин Д.А., Роговой А.С., Левашов А.Н., Левашов Я.Н. Верификация расчетов течений в вихрекамерных устройствах. Вісник НТУУ "КПІ". Сер. Машинобудування, 2016. № 2 (77).С. 71-78.
8. Hartmann J., Lazarus F. Hg-dynamics II. Theory of laminar flow of electrically conductive Liquids in a Homogeneous Magnetic Field,1937. 15(7).
9. Alfvén H. Magnetohydrodynamics and the thermonuclear problem. Proceedings of the Second Nations International Conference. Vol. 31. 1958.
10. Davidson P.A. Magnetohydrodynamics in materials processing. Annual Review of Fluid Mechanics, 1999. 31(1), pp. 273-300.
11. Takeuchi J., Satake S.I., Morley N.B., Kunugi T., Yokomine T., Abdou M.A. Experimental study of MHD effects on turbulent flow of Flibe simulant fluid in circular pipe. Fusion Engineering and Design, 2008. 83(7-9), pp. 1082-1086.
12. Zhang X., Pan C., Xu Z. Experimental investigations on liquid metal MHD turbulent flows through a circular pipe with a conductive wall. Fusion Engineering and Design, 2017. 125, pp. 647-652.
13. Csizmadia P, Till S, Hos C. An experimental study on the jet breakup ofBingham plastic slurries in air. Exp Therm Fluid Sci, 2019,102, pp. 271-278.
14. Liu M, Duan YF. Resistance properties of coalewater slurry flowing throughlocal piping fittings. Exp Therm Fluid Sci, 2009, 33(5), pp.828-837.
15. Rogovyi A., Korohodskyi V., Medvediev Ye. Influence of Bingham fluid viscosity on energy performances of a vortex chamber pump. Energy, 2021. Vol. 218. pp. 119432.
16. Meng Z., Zhang S., Jia J., Chen Z., Ni M. AK‐Epsilon RANS turbulence model for incompressible MHD flow at high Hartmann number in fusion liquid metal blankets. International Journal of Energy Research, 2018. Vol. 42(1), pp. 314-320.
17. Rogovyi A.S. Verification of fluid flow calculation in vortex chamber superchargers. Автомобильный транспорт: сб. науч. тр. Харьков, 2016. Вып. 39. С. 39-46.
18. Tavangar S, Hashemabadi SH, Saberimoghadam A. CFD simulation for secondarybreakup of coalewater slurry drops using OpenFOAM. Fuel ProcessTechnol 2015.132. pp.153e63.
19. Chernetskaya-Beletskaya N., Rogovyi A., Baranov I., Krut A., Miroshnikova M., Bragin N. Increasing the efficiency of highly concentrated coal-water fuel based on the simulation of non-Newtonian fluid flow. In MATEC Web of Conferences 2019. Vol. 294, pp. 01009.
20. Сьомін Д.О., Роговий А.С. Вихорокамерні нагнітачі: монографія. Харків. ФОП Мезіна В.В. 2017. 204 с.
21. Роговий А. С. Розробка теорії та методів розрахунку вихорокамерних нагнітачів : дис. ... д-ра техн. наук : спец. 05.05.17 / Харківський нац. автомобільно-дорожній ун-т. Харків, 2017. 364 с.
22. Чернецька-Білецька Н.Б., Роговий А.С., Баранов І.О., Мірошникова М.В. Математична модель просторової тривимірної течії водовугільного палива. Вісник СНУ ім. В.Даля. Сєвєродонецьк: Вид-во Східноукр. нац. ун-ту ім. В.Даля. 2018. №1 (242). С. 159-164.
23. WidlundO. Implementation of MHD model equations in CFX 4.3.2000.
24. Лойцянский Л.Г. Механика жидкости и газа: Учеб. для вузов. 7-е изд., испр. М.: Дрофа 2003. 840 с.
25. Гарбарук А.В., СтрелецМ. Х., ШурМ.Л. Моделирование турбулентности в расчетах сложных течений, учеб. пособие, Издательство Политехнического университета, Спб, 2012, 88 с.
26. Matyushenko A. A., Stabnikov A. S., Garbaruk A. V. Criteria of computational grid generation for turbulence models taking into account laminar-turbulent transition. In Journal of Physics: Conference Series. 2019. Vol. 1400, No. 7. pp. 077047.
27. Ansys C.F.X. Solver Theory Guide. Release 2019 R3. Canonsburg: ANSYS. 2019.
28. Zhang H., Li J., Wang Z., Xu Y., Lai Y. The numerical modeling of melt flow and mhd instabilities in an aluminum reduction cell. JOM, 2010. 62(11), pp. 26-31.
29. Han X., Sagaut P., Lucor D. On sensitivity of RANS simulations to uncertain turbulent inflow conditions, Comput. Fluids. 2012. Vol. 61. pp. 2-5.
30. Сьомін Д.О., Павлюченко В.О., Мальцев Я.І., Войцеховський С.В., Роговий А.С., Дмитрієнко Л.В., Мальцева М.О. Вихрові виконавчі пристрої: В 2-х частинах: Монографія. Луганськ: вид-во СНУ ім. В.Даля, 2009. Ч.1 Однорідні робочі середовища. 256 с.
31. Launder B.E., SpaldingD.B. The numerical computation of turbulentflows. Computer Methods in Appl. Mech. and Eng., 1974. 3. pp. 269–289.