Preliminary treatment of pulp by ultrasound for cleaning of ore grains and disintegration of flocculation formations based on the effects of cavitation

Authors

  • V.S. Morkun Kryvyi Rih National University
  • N.V. Morkun Kryvyi Rih National University
  • V.V. Tron Kryvyi Rih National University
  • O.Y. Serdiuk Kryvyi Rih National University
  • І.А. Haponenko Kryvyi Rih National University
  • А.А. Haponenko Kryvyi Rih National University

DOI:

https://doi.org/10.33216/1998-7927-2022-271-1-24-35

Keywords:

ultrasound, cavitation, iron ore pulp, disintegration, flocculation

Abstract

The research is aimed to increase the quality of processing of magnetite concentrates in flotation technological process by disintegration of ore flocculations and cleaning the surface of ore particles Applying nonlinear effects of the high-energy ultrasound field on ore particles was proposed and the peculiarities of the formation of cavitation regimes in iron ore pulp for disintegration of ore flocculations and cleaning of the surface of ore particles were investigated. The parameters of ultrasonic influence for the formation and maintenance of cavitation processes and acoustic flows in the iron ore pulp are calculated in the basis of the generalized model of the dynamics of air bubbles, presented in the form of the Rayleigh-Plesset equation.

Depending on the parameters of iron ore pulp components the optimal frequency of high-energy ultrasound to maintain cavitation processes was determined on the basis of the obtained laws of cavitation processes. Mathematical model of the process of ultrasonic signal propagation in liquid medium under conditions of changes in the speed of sound propagation and density changes was synthesized on the basis of the k-space method of the first and second order as a system of linear equations of the first order. The calculation of the power of high-energy ultrasound, which allows to maintain cavitation regimes in the iron ore pulp, was carried out on the basis of the results of the study of the propagation of the ultrasonic pulse front using computer simulations. Based on the simulation results, it was found that to improve the quality of cleaning ore particles before flotation, it is advisable to exert a spatial effect on iron ore pulp, which includes a combination of high-energy ultrasound with a specific frequency in cavitation mode modulated by high-frequency pulses and a pulsed magnetic field of decreasing voltage. In the study of the process of flocculation and deflocculation, the dependence of the value of the magnetic susceptibility of ore particles on the duration of magnetization was taken into account. The results of experimental studies of the device for demagnetization of iron ore pulp particles usage, obtained using an ultrasonic granulometer "Pulsar".

References

1. Губин Г. В., Ткач В. В., Равинская В. О. Применение ультразвука для очистки поверхности измененных минеральных частиц перед флотацией. Качество минерального сырья : сб. научн. трудов. 2017. Т. 1. С. 341–349.

2. Morkun, V., Morkun, N., Pikilnyak, A. The adaptive control for intensity of ultrasonic influence on iron ore pulp. Metallurgical and Mining Industry. 2014. Vol. 6(6), P. 8 11.

3. Fornberg B. A Practical Guide to Pseudospectral Methods. Cambridge University Press, Cambridge, 1996.

4. Golik V., Komashchenko V., Morkun V., Zaalishvili V. Enhancement of lost ore production efficiency by usage of canopies. Metallurgical and Mining Industry. 2015. Vol. 7 (4), P. 325-329.

5. Morkun V., Semerikov S., Hryshchenko S., Slovak K. Environmental geo-information technologies as a tool of pre-service mining engineer's training for sustainable development of mining industry. CEUR Workshop Proceedings. 2017. Vol. 1844, P. 303-310.

6. Ambedkar B., Nagarajan R., Jayanti S., Investigation of high-frequency, high-in- tensity ultrasonics for size reduction and washing of coal in aqueous medium, Ind. Eng. Chem. Res. 2011. Vol. 50. 13210–13219.

7. Ambedkar B. Ultrasonic coal-wash for de-ashing and de-sulfurization: experimental investigation and mechanistic modeling, Springer-Verlag, Berlin Heidelberg, 2012.

8. Morkun V., Morkun N., Tron V. Distributed closed-loop control formation for technological line of iron ore raw materials beneficiation. Metallurgical and Mining Industry. 2015. Vol. 7(7). P. 16‑19.

9. Morkun V., Morkun N. Estimation of the crushed ore particles density in the pulp flow based on the dynamic effects of high-energy ultrasound. Archives of Acoustics. 2018. Vol. 43 (1). P. 61-67.

10. Harrison C.D., Raleigh C.E., Jr., Vujnovic B.J. The use of ultrasound for cleaning coal, in: Proceedings of the 19th Annual International Coal Preparation Exhibition and Conference, Lexington, KY, USA, 2002, P. 61–67.

11. Morkun V., Morkun N., Tron V. Model synthesis of nonlinear nonstationary dynamical systems in concentrating production using Volterra kernel transformation. Metallurgical and Mining Industry. 2015. Vol. 7(10), P. 6-9.

12. Morkun V., Morkun N., Tron V. Distributed control of ore beneficiation interrelated processes under parametric uncertainty. Metallurgical and Mining Industry. 2015. Vol. 7(8). P. 18-21.

13. Kozubkova M., Rautova J., Bojko M. Mathematical model of cavitation and modelling of fluid flow in cone. Procedia Engineering. 2012. Vol. 39. P. 9–18.

14. Singhal, A. K., Li H. Y., Athavale M. M., Jiang Y. Mathematical basis and validation of the full cavitation model. Journal of Fluids Engineering. 2002. Vol. 124. P. 617-624

15. Zwart .J., Gerber A. G., Belamri T., Two-phase flow model for predicting cavitation dynamics. International Journal of Rotating Machinery. 2004. Vol. 10. P. 15–25.

16. Schnerr, G. H.; and Sauer, J. Physical and Numerical Modeling of Unsteady Cavitation Dynamics. In Fourth InternationalConference on Multiphase Flow, New Orleans, USA, 2001.

17. Hu Zh. Comparisonof Gilmore-Akulichevequationand Rayleigh-Plesset equation on the rapeutic ultrasound bubble cavitation. Graduate Theses and Dissertations. Paper 13458. 44 p.

18. Carvell K. J., Bigelow T. A. Dependence of optimal seed bubble size on pressure amplitude at therapeutic pressure levels. Ultrasonics. 2011. Vol. 51(2). P. 115-122.

19. HoffL., SontumP. C., HovemJ. M. Oscillationsofpolymericmicrobubbles: Effectoftheencapsulatingshell. J. Acoust. Soc. Am. 2000. Vol. 107. P. 2272-2280.

20. Hoff L. Acoustic characterization of contrast agents for medical ultrasound imaging. Dordrecht ; London: Kluwer Academic Publishers, 2001.

21. Tabei M., Mast T. D., Waag R. C. A k-space method for coupled first-order acoustic propagation equations. Acoustical Society of America. 2002. Vol. 111 (1), Pt. 1. P. 53-63.

22. Pierce D., Acoustics: An Introduction to its Physical Principles and Applications, 2nd ed. Acoustical Society of America, Woodbury, NY, 1989.

23. Mast T. D., Souriau L. P., Liu D.-L., Tabei M., Nachman A. I., Waag R. C. A k-space method for large-scale models of wave propagation in tissue. IEEE Trans. Ultrason. Ferroelectr. Freq. Control. 2001. Vol. 48. P. 341–354.

24. Wojcik G., Fornberg B., Waag R., Carcione L., Mould J., Nikodym L., Driscoll T. Pseudospectral methods for large-scale bioacoustic models. Proc. IEEE Ultrason. Symp. 1997. Vol. 2. P. 1501–1506.

25. Mickens R. A. Nonstandard finite difference models of differential equations. World Scientific, Singapore, 1994.

26. Soneson J. HIFU Simulator v1.2. URL: http://www.mathworks.com/matlabcentral/fileexchange/30886-high-intensity-focused-ultrasound-simulator.

27. Кармазин В.И., Кармазин В.В.. Магнитные методы обогащения. М.: Недра, 1984. 416 с.

28. Кармазин В.В., Кармазин В.И. Магнитные, электрические и специальные методы обогащения полезных ископаемых. М.: Издательство МГТУ, 2005. 426 с.

29. Сотнікова Т. Г. Оптимальне керування процесом подрібнення залізних руд в умовах невизначеності : дис. канд. техн. наук : 05.13.07 / Т. Г. Сотнікова. – Сєверодонецьк, 2016. 190 с.

30. Власко-Власов В. К., Тихомиров О. А. Коливання монополярних доменних стінок в полі ультразвукової хвилі. Фізика твердого тіла. 1991. Том 33, №12. С. 3498–3501.

31. Акулов Н. С. Ферромагнетизм. М.: Гостехтеоретиздат, 1939. 188 с.

Published

2022-02-08