Simulation of the process of direct oxidation of atmospheric nitrogen and study of the optimal design of the nitric acid production installation

Authors

  • V.P. Slobodyanyuk Volodymyr Dahl East Ukrainian National University, Kyiv city
  • A.V. Kuzmenko Volodymyr Dahl East Ukrainian National University, Kyiv city
  • O.B. Tselishchev Volodymyr Dahl East Ukrainian National University, Kyiv city
  • S.O. Kudryavtsev Volodymyr Dahl East Ukrainian National University, Kyiv city
  • M.G. Loriia Volodymyr Dahl East Ukrainian National University, Kyiv city
  • О.А. Duryshev Volodymyr Dahl East Ukrainian National University, Kyiv city

DOI:

https://doi.org/10.33216/1998-7927-2023-279-3-37-44

Keywords:

nitric acid, nitrogen oxides, hydrogen peroxide, oxidation,, activation energy, excited state, quantum chemical calculations

Abstract

The work examines the process of oxidation of molecular nitrogen by high-energy oxidants (nitric acid steam, products of thermolysis of nitric acid, hydrogen peroxide).

The principle scheme of the installation of direct oxidation of molecular nitrogen has been developed, the methodology of the experiment and analysis of nitrogencontaining compounds and other participants of the reaction has been developed. Research methods - modeling of the process of direct oxidation of molecular nitrogen using the results of previous studies and the results of theoretical quantum chemical studies, processing and analysis of the obtained results.

A detailed analysis of experimental and theoretical data related to the possibility of direct oxidation of molecular nitrogen with nitric acid vapor and hydrogen peroxide was carried out. To achieve this goal, a schematic diagram of a laboratory setup with modifications for the study of the Karavaev, Nagiyev, and Zakharov effects was developed. Methods for the analysis of nitrogen oxides in the gas phase and for the quantitative content of nitric acid in the solution and the qualitative determination of the presence of nitrous oxide as a possible reaction product were also proposed. To implement the process of obtaining nitric acid from atmospheric air by the method of Zakharov I.I. with the use of the Karavaev and Nagiev effects, the design of the reactor assembly, consisting of a reactor tube combined with a Tesla coil and with the introduction of a regulated air flow into the discharge zone, the removal of reaction gases from the reactor tube into the pre-oxidizer-cooler and subsequent absorption with oxidation, turned out to be the most promising to nitric acid of nitrogen oxides in an absorber filled with water with the addition of hydrogen peroxide.

Effectively affects the increase in the concentration of nitrogen oxides in the reaction gases by reducing the air flow and improving the contact (due to the reduction in the diameter of the inlet hole or the reactor itself) of the air with the discharge of the Tesla coil or with the flame of the plasma generator. The addition of hydrogen peroxide improves the oxidation and absorption of nitrogen oxides with the formation of acid in the absorber.

References

1. Электронная и геометрическая структуры изомеров азотной кислоты. Квантово-химические DFT расчеты / И. И.Захаров, О. И. Захарова, А. Б. Целищев, М. Г. Лория // Журнал структурной химии. – 2009. – Т. 50, №5. – С. 843–851.

2. Photochemical Water Decomposition in the Presence of Nitrogen Dioxide in Troposphere: Density Functional Study with a Symmetrized Kohn-Sham Formalism/ B. F. Minaev, I. I. Zakharov, A. B. Tselishtev [and other] // ChemPhysChem. – 2010. – Vol. 11. – Issue 18, DOI: 10.1002/cphc.201000440. – Р. 4028–4034.

3. Захаров И. И. Структура интермедиата НООN=N-ООН при активации N2 перекисью водорода. Квантово-химические DFT расчеты / И. И. Захаров, М. Г. Лория, А. Б. Целищев // Журнал структурной химии. – 2013. – Т. 54, №1. – С. 17–24.

4. Караваев М.М. Гетерогенно-каталитическое окисление азота парами азотно Караваев, В. А. Матышак // Химическая промышленность. – 1998. – No 9. – С. 537-542.

5. Захаров И.И. Исследование структуры высокоэнергетических состояний триоксида азота и димера (NO)2: DFT расчеты в рамках симметризованного формализма Кона-Шэма / И.И. Захаров // Журнал структурной химии. – 2011. – 52, No 3. – С. 461-469.

6. Захаров И. И. Квантово-химическое исследование возможности фото-химической активации молекулярного азота / И. И. Захаров // Теоретическая и экспериментальная химия. – 2012. – Т. 48, No 3. – С. 91-195.

7. Связывание азота в виде его закиси / М. Ф.Нагиев, Т. М. Нагиев, Ф. А. Асланов, В. М. Байрамов, Р.А. Искендеров // ДАН СССР. – 1973. – Т. 213, No 5. – С. 1096-1098.

8. Нагиев Т.М. Сопряженные реакции окисления перекисью водовода / Т.М. Нагиев // Успехи химии. – 985. – 54, No 10. – С. 1654-1673.

9. Захаров И. И. Структура интермедиата HOO—N=N— OOH при активации N2 перекисью водорода. Квантово-химические DFT расчеты / И. И. Захаров, М. Г. Лория, А. Б. Целищев // Журнал структурной химии. – 2013. – 54, No 1. – С. 17-24.

Published

2023-11-10