Еfficiency of wind power plant with aerodynamic multiplication tg-750 according to the results of experimental operation
DOI:
https://doi.org/10.33216/1998-7927-2025-293-7-40-45Keywords:
wind power plant, aerodynamic multiplication, efficiency, power factor, braking factorAbstract
The article indicates the need to improve the efficiency of converting wind energy into electrical energy. Information is provided that the mechanical multiplier ranks second in terms of unreliability among the equipment of a wind power plant. Due to the need for routine maintenance, oil replacement, poor environmental and noise characteristics, developers are looking for alternative options. It is indicated that low-speed generators, despite extensive operating experience, have poor weight-and-dimensions. An alternative and promising solution is the use of aerodynamic multiplication. A comparison of wind power plants with aerodynamic multiplication with plants based on a low-speed generator allows us to conclude that they have better weight-and-dimensions. Historical information is provided on the development and study of wind power plants with aerodynamic multiplication. The principle of operation of wind power plants with aerodynamic multiplication is described and an explanation is given of how the generator speed is matched. Historical errors in assessing the efficiency of aerodynamic multiplication based on the Betz criterion are presented. It is shown that Golubenko M.S. and his followers proved that the efficiency of aerodynamic multiplication does not depend on the primary wind turbine, but is determined only by the parameters of the secondary wind turbine. The efficiency is calculated as the ratio of the power coefficient of the secondary wind turbine to its braking coefficient. The theoretical value of the efficiency of the TG-750 plant, which Golubenko M.S. obtained at the design stage, is given. According to the data obtained during the experimental operation of the TG-750 wind power plant, graphs of the dependences of the power coefficient of the primary and secondary wind turbines and their braking coefficients are constructed. The dependence of the efficiency of aerodynamic multiplication on speed was calculated and the results obtained were compared with theoretical values. The real efficiency turned out to be somewhat lower than the theoretical one, which is explained by the presence in the installation, in addition to aerodynamic processes, of purely mechanical ones - friction, vibration, etc. The efficiency of converting wind energy into electricity in installations with aerodynamic multiplication is higher than in classical wind turbines. Conclusions were drawn about the confirmation of the theoretical results by the results obtained in the process of experimental operation of the TG-750 and the prospects for studying and implementing installations of this type.
References
1. Zheng R, Song Y, Fang H. Reliability analysis of wind turbines considering seasonal weather effects. Proceedings of the Institution of Mechanical Engineers, Part O: Journal of Risk and Reliability. 2024;239(2):289-297. DOI:https://doi.org/10.1177/ 1748006X241235727
2. Ranjan R, Kumar S, Ghosh SK, Kumar M. Experimental and statistical analysis of wear on gear material. Lubrication Science. 2023;1‐11. DOI:https://doi.org/10.1002/ls.1650.
3. W. Wu, V. S. Ramsden, T. Crawford and G. Hill, "A low speed, high-torque, direct-drive permanent magnet generator for wind turbines," Conference Record of the 2000 IEEE Industry Applications Conference. Thirty-Fifth IAS Annual Meeting and World Conference on Industrial Applications of Electrical Energy (Cat. No.00CH37129), Rome, Italy, 2000, pp. 147-154 vol.1, DOI:https://doi.org/10.1109/IAS.2000.881049.
4. Голубенко Н.С. Ветровая электрическая турбогенера-торная установка ТГ-750 / Н.С. Голубенко, В Е. Олишевская, С.Д. Курдюков, Г.С. Олишевский, С.С. Курдюков // Наука та інновації. 2008. 4, №6: 71-77. DOI:https://doi.org/10.15407/scin4.06.071.
5. Son, Yoon-Gyu, and all. Test results of an inverter system for 750kW gearless wind turbine. Proceedings of the Korean Society for New and Renewable Energy Conference, 2005, Spring Conference of the Korean Society for New and Renewable Energy 2005.6 p.59-63.
6. Стрункін Г.М. Оцінювання маси основного обладнання вітроенергетичної установки з аеродинамічним мультиплікуванням на базі асинхронного генератора з фазним ротором. // Вісник Східноукраїнського національного університету імені Володимира Даля. 2025. №2. С.49-55. DOI:https://doi.org/10.33216/1998-7927-2025-288-2-49-55.
7. Ветроэлектрический генератор: Пат. 1457, Класс 88-с. СССР; заявл. 14.01.1924; опубл. 31.07.1926.
8. Красовский Н.В. Схема ветряного двигателя с аэродинамической передачей для мощностей 100-3.000 кв / Н.В. Красовский // Известия ОГИН. Москва. Ан СССР. 1939. №5: 15.
9. Вітродвигун: Патент 49970 Україна, МПК F03D 1/00; заявл. 30.03.2002; опубл. 15.10.2002, Бюл. № 10.
10. Голубенко Н.С. Тенденции развития ветроэнергетики и безмультипликаторные ветровые установки / Голубенко Н.С., Довгалюк С.М., Фельдман А.М., Цыганов В.А. // Нетрадиционная энергетика ХХІ века: Материалы IV международной конференции (Крым, Гурзуф, 2003). 2003: 68-74.
11. Миргород В.Ф., Ранченко Г.С., Голубенко Н.С. Моделирование динамических режимов ветроэнергетической установки большой мощности. Авіаційно-космічна техніка і технологія. 2006. № 4(30). С. 96–99.
12. Alekseevskiy, Dmitriy, et al. "Procedure for the Synthesis of Models of Electrotechnical Complexes." Eastern-European Journal of Enterprise Technologies, vol. 6, no. 9, 2018: 48-54, DOI:https://doi.org/10.15587/1729-4061.2018.150483.
13. Андриенко П.Д. Повышение единичной мощности и эффективности ВЭУ с аэродинамической мультипликацией/П. Д. Андриенко, В. П. Метельская, И. Ю. Немудрый // Вестник Нац. техн. ун-та "ХПИ": сб. науч. тр. Темат. вып.: проблемы автоматизированного электропривода. Харьков: НТУ "ХПИ". 2013. № 36 (1009): С. 394-395.
14. Strunkin, H. (2024). Simulation of the operation of a voltage inverter as part of an autonomous wind power plant with aerodynamic multiplication based on an asynchronous generator with a phase rotor. Technologies and Engineering, 25(6): 69-79. DOI:https://doi.org/10.30857/2786-5371.2024.6.7.
15. Strunkin H., "Simulation of the operation of an autonomous wind power plant with aerodynamic multiplication based on an asynchronous generator with a phase rotor with excitation from a voltage-source inverter," Turk J Electr Power Energy Syst., 2025; 5(2), 142-151. DOI:https://doi.org/10.5152/ tepes.2025.24034.
16. Strunkin G. Wind turbines with aerodynamic multiplication. Retrospective review. // Śląskie Wiadomości Elektryczne, 2.2025, p. 9-12.
17. Morgan, L. and Leithead, W.: Aerodynamic modelling of a novel vertical axis wind turbine concept, Journal of Physics: Conference Series, 2257. DOI:https://doi.org/10.1088/1742-6596/ 2257/1/012001, 2022.
18. Morgan, L., Leithead, W., & Carroll, J. (2024). On the use of secondary rotors for vertical axis wind turbine power take off. Wind Energy, 27(6): 569-582. DOI:https://doi.org/10.1002/we.2901.
19. Голубенко Н.С. Аэродинамические особенности безмультипликаторной турбогенераторной схемы ветроэлектрической установки большой мощности // Нетрадиционная энергетика ХХI века: материалы IV междунар. конф., Крым, Гурзуф. 2003. С. 125–132.
20. Anderson, C. (2020). Wind Turbines: Theory and Practice. Cambridge: Cambridge University Press.
21. Стрункін Г.М. Застосування пристроїв силової електроніки. Дніпро. Середняк Т. К., 2024: 408. ISBN 978-617-8139-59-9. DOI:https://doi.org/ 10.5281/zenodo.15256472.