New biocompatible titanium alloys with minimal alloying (Ti–O–Fe–C–Si–Au / Ti–Mo–In) as an alternative to Ti-6Al-4V
DOI:
https://doi.org/10.33216/1998-7927-2025-294-8-11-17Keywords:
titanium alloys, microstructure, alloying, β-stabilisation, biocompatibility, mechanical properties, implantologyAbstract
The paper examines contemporary approaches to the design and development of advanced titanium alloys for biomedical applications, with a focus on microstructural engineering, phase composition control, and functional property optimisation through variation of alloying additions and thermomechanical treatments. It is demonstrated that the conventional Ti-6Al-4V alloy, despite its widespread utilisation, exhibits several intrinsic drawbacks, such as a significant mismatch in elastic modulus compared to natural bone tissue and the risk of releasing cytotoxic alloying components, particularly aluminium and vanadium. In this context, two innovative alloying strategies are considered. The first involves multicomponent alloying of the titanium matrix with biocompatible elements, exemplified by Ti–O–Fe–C–Si–Au systems, which provide grain refinement, increased dislocation density, enhanced strength, and corrosion resistance under long-term exposure to aggressive physiological environments. The second strategy focuses on targeted β-stabilisation, as realised in β-Ti–Mo–In alloys, which promote the formation of a stable β-phase with reduced elastic modulus and improved ductility, ensuring superior compatibility with biomechanical requirements. Experimental investigations in recent years confirm that controlled oxygen and iron alloying increases yield strength above 900 MPa while maintaining elongation of around 15 %, whereas minor additions of gold significantly improve biocompatibility without compromising plasticity. At the same time, β-Ti–Mo–In alloys demonstrate stable phase configurations and elastic moduli close to those of bone tissue, reducing the risk of stress shielding and ensuring long-term implant reliability. It is established that the combination of minimal alloying strategies with optimised thermomechanical processing enables the simultaneous achievement of high mechanical strength, corrosion resistance, and biocompatibility. These findings underline the prospects of further research into controlled phase transformations, texture evolution, and strengthening mechanisms, opening up opportunities for the design of next-generation titanium-based materials with improved clinical efficiency and engineering applicability.
References
1. Long, M., Rack, H. J. Titanium alloys in total joint replacement — A materials science perspective. Biomaterials. 1998. Vol. 19(18). P. 1621–1639. DOI: 10.1016/S0142-9612(97)00146-4
2. Geetha, M., Singh, A. K., Asokamani, R., Gogia, A. K. Ti based biomaterials, the ultimate choice for orthopaedic implants – A review. Progress in Materials Science. 2009. Vol. 54(3). P. 397–425. DOI: 10.1016/j.pmatsci.2008.06.004
3. Haase F., Siemers C., Rosler J. Two novel titanium alloys for medical applications:Thermo‑mechanical treatment, mechanical properties, and fracture analysis. Journal of Materials Research. 2022. Vol. 37. P. 2589–2603. DOI :10.1557/s43578-022-00605-2.
4. Romero‑Resendiz L., Rossi M. C., Segui‑Esquembre C., Amigo‑Borras V. Development and characterization of a new predominantly β Ti–15Mo–5In alloy for biomedical applications. J Mater Sci. 2023. Vol. 58. P. 15828–15844. DOI: 10.1007/s10853-023-09017-x.
5. Sarraf M., Ghomi E. R., Alipour S., Ramakrishna S., Sukiman N. L. A state-of-the-art review of the fabrication and characteristics of titanium and its alloys for biomedical applications. Biodes Manuf. 2021. Vol. 5(2). P. 371–395. DOI: 10.1007/s42242-021-00170-3
6. Bordbar-Khiabani A. Gasik M. Electrochemical and biological characterization of Ti–Nb–Zr–Si alloy for orthopedic applications. Scientific Reports. 2023. Vol. 13. P. 2312. DOI: 10.1038/s41598-023-29553-5
7. Shen J.Y., Hu L.X., Sun Y., Feng X.Y., Fang A.W., Wan Z.P. Hot deformation behaviors and three-dimensional processing map of a nickel-based superalloy with initial dendrite microstructure. Journal of Alloys and Compounds. 2020. Vol. 822. P. 153735. DOI: 10.1016/j.jallcom.2020.153735
8. Liu J., Wang K., Li X., Zhang X., Gong X., Zhu Y., Ren Z., Zhang B., Cheng, J. Biocompatibility and osseointegration properties of a novel high strength and low modulus β- Ti10Mo6Zr4Sn3Nb alloy. Front Bioeng Biotechnol. 2023. Vol. 11. P. 1127929. DOI: 10.3389/fbioe.2023.1127929
9. Mustafi L., Nguyen V.T., Song T., Deng Q., Murdoch B.J., Chen X.-B., Fabijanic D.M., Qian M. A strong and ductile biocompatible Ti40Zr25Nb25Ta5Mo5 high entropy alloy. Journal of Materials Research and Technology. 2024. Vol. 30. P. 7885-7895. DOI: 10.1016/j.jmrt.2024.05.118
10. DIN Deutsches Institut für Normung e.V., DIN EN ISO 6892-1:2017-02, Metallic Materials—Tensile Testing—Part 1: Method of Test at Room Temperature (ISO 6892-1:2016); German version EN ISO 6892-1:2016 (Beuth Verlag GmbH, Berlin). DOI: 10.31030/2384831
11. DIN Deutsches Institut für Normung e.V., DIN 50125:2016-12, Testing of Metallic Materials—Tensile Test Pieces (Beuth Verlag GmbH, Berlin). DOI: 10.31030/2577390
12. Senopati Galih, Rashid Rizwan Abdul Rahman, Kartika Ika, Palanisamy Suresh Recent Development of Low-Cost β-Ti Alloys for Biomedical Applications: A Review. Metals. 2023. Vol. 13(2), P. 194. DOI: 10.3390/met13020194
13. Alabort E., Tang Y.T., Barba D., Reed R.C. Alloys-by-design: A low-modulus titanium alloy for additively manufactured biomedical implants. Acta Materialia. 2022. Vol. 229. P. 117749 DOI: 10.1016/j.actamat.2022.117749
14. Zhang, L.-C. Chen L.-Y., A Review on biomedical titanium alloys: recent progress and prospect. Adv. Eng. Mater. 2019. Vol. 21(4), P. 1801215. DOI: 10.1002/adem.201801215
15. Li Y., Yang C., Zhao H., Qu S., Li X., Li Y. New developments of Ti-based alloys for biomedical applications. Materials. 2014. Vol. 7(3), P. 1709–1800 DOI: 10.3390/ma7031709
16. Siemers C., Brunke F., Saksl K., Kiese J., Kohnke M., Haase F., Schlemminger M., Eschenbacher P., Fürste J., Wolter D., Sibum H. Development of advanced titanium alloys for aerospace, medical and automotive applications, in Proceedings of the XXVIII International Mineral Processing Congress (IMPC 2016), September 11-15 2016, Québec City, Canada (Canadian Institute of Mining Metallurgy & Petroleum (CIM), Westmount, Canada, 2016), pp. 3600–3611
17. Lütjering G., Williams J.C., Titanium, 2nd edn. (Springer, Berlin, 2007). DOI:10.1007/978-3-540-73036-1
18. Peters M., Hemptenmacher J., Kumpfert J., Leyens C. Structure and properties of titanium and titanium alloys, in Titanium and Titanium Alloys: Fundamentals and Applications. ed. by C. Leyens, M. Peters (Wiley, Weinheim, 2003), pp. 1–36. DOI:10.1002/3527602119.ch1