Mathematical modelling of excavator productivity taking into account the parameters of the adsorbed vapour layer in the tribo-connections of an axial-piston pump
DOI:
https://doi.org/10.33216/1998-7927-2025-295-9-31-41Keywords:
excavator hydraulic drive, axial piston pump, adsorbed surfactant layer, wear, volumetric efficiency, productivityAbstract
The performance of crawler hydraulic excavators largely depends on the efficiency of the hydraulic system, primarily on the volumetric capacity of the axial piston pump that supplies the working equipment. During prolonged operation, the mating surfaces of the pump tribopair (cylinder block – distribution washer, piston – cylinder) are subject to wear, which leads to an increase in internal leaks and a gradual decrease in volumetric efficiency and, as a result, machine productivity. Modern hydraulic fluids for construction equipment contain anti-wear additives based on surfactants (SAS), which are physically adsorbed on microscopic irregularities of metal surfaces and form a thin protective film.
This adsorbed film partially compensates for surface roughness, increases the actual contact area, reduces local contact stresses at the base of irregularities and thus slows down wear. However, the thickness of this film is not constant: it decreases during the operation of the excavator due to a reduction in the concentration of SAS under the influence of mechanical loads and temperature. To compensate for this phenomenon, in the practice of operating hydraulically driven machines, the working fluid is periodically replaced as planned, thus restoring the concentration of SAS to its initial level. The article proposes a refined mathematical model in which the thickness of the SAS film is described by an exponential law. At the same time, the restoration of the properties of the hydraulic fluid over a fixed time interval is taken into account by introducing the function of changing the thickness of the surfactant film into the expression for calculating the effective tribological clearance associated with the model of leakage changes in the pumping unit of an axial piston pump. On this basis, the dependence of the change in the volumetric efficiency of the pump on the operating time of the excavator and the frequency of hydraulic fluid replacement is determined.
On this basis, the dependence of the volumetric efficiency of the pump on its operating time was obtained and, ultimately, the dependence of the excavator's performance on its operating time, taking into account the frequency of replacement of the hydraulic fluid in the hydraulic drive.
The model is parameterised for a CAT 320 class hydraulic excavator with a bucket volume of 0.75 m³ (two pumps with a capacity of 215 l/min, working pressure up to 35 MPa) and can be used to justify the choice of hydraulic fluids and maintenance intervals for hydraulic drives in construction and road machinery.
References
1. A complete analysis of axial piston pump leakage and output flow ripples / J. M. 1. Bergadà та ін. Applied Mathematical Modelling. 2012. Т. 36, вип. 4. С. 1731–1751. URL: https://doi.org/10.1016/j.apm.2011.09.016.
2. Zawistowski T., Kleiber M. Gap flow simulation methods in high pressure variable displacement axial piston pump. Archives of Computational Methods in Engineering. 2017. Т. 24. С. 519–542. URL: https://doi.org/10.1007/s11831-016-9180-5.
3. Ivantysyn J., Ivantysynova M. Hydrostatic pumps and motors: Principles, design, performance, modelling, analysis, control and testing : monograph. New Delhi : Tech Books International, 2003. 512 с.
4. Войтов В. А. В. А. Конструктивна зносостійкість вузлів тертя гідромашин. Частина II : методологія моделювання граничного змащення в гідромашинах.. Харків : Центр Леся Курбаса, 1997. 152 с.
5. Hamrock B. J., Schmid S. R., Jacobson B. O. Fundamentals of fluid film lubrication : 2nd ed.. Boca Raton : CRC Press, 2004. 728 с. URL: https://doi.org/10.1201/9780203021187.
6. Noria Corporation. Tribology explained. Noria Corporation. Lubrication (Machinery Lubrication). URL: https://www.machinerylubrication.com/ tribology-31340..
7. Israelachvili J. N. Intermolecular and surface forces. San Diego : Academic Press, 2011. 674 с. ISBN 978‐0‐12‐391927‐4.
8. Michael P. W., Mettakadapa S., Shahahmadi S . An adsorption model for hydraulic motor lubrication. 2015. Т. 138, вип. 1. (Article ; т. 011801). URL: https://10.1115/1.4031139.
9. Zhang J., Meng Y . Boundary lubrication by adsorption film. 2015. Т. 3, вип. 2. С. 115–147. URL: https://doi.org/10.1007/s40544-015-0084-4.
10. Spikes H. Friction modifier additives. Tribology Letters. 2015. Т. 60, вип. 1. С. 1–26. URL: https://10.1007/s11249-015-0589-z.
11. Stålgren J. J. R., Eriksson J., Boschkova K. Adsorption and frictional properties of surfactant assemblies at solid surfaces. Journal of Colloid and Interface Science. 2001. Т. 234, вип. 1. С. 1–10.
12. Stålgren J. J. R. J. J. R. Adsorption of surfactants at the solid–liquid interface : автореф. дис. … д-ра / Royal Institute of Technology (KTH). Stockholm, 2002..
13. Lu K., Wang X., Qu J. Adsorption behavior and lubrication mechanism of surfactants on metal surfaces. Tribology International. 2021. Т. 157. (Article ; т. 106861). URL: https://10.1016/j.triboint.2021.106861.
14. Somasundaran P., Krishnakumar S. Adsorption of surfactants and their mixtures at solid–liquid interfaces. Advances in Colloid and Interface Science. 2000. Т. 88, вип. 2. С. 179–208. URL: https://doi.org/10.1016/S0001-8686(00)00045-2.
15. Аврунін Г. А., Кириченко І. Г., Самородов В. Б. Гідравлічне обладнання будівельних та дорожніх машин : підручник. Харків : ХНАДУ, 2016. 438 с.
16. Berendsen Fluid Power. What loss of efficiency tells you about hydraulic pump and motor wear. Berendsen Fluid Power. URL: https://berendsen.com.au/. /understanding-hydraulic-pump-motor-efficiency.
17. Manring N. D. Hydraulic control systems : 2nd ed. Hoboken : Wiley, 2020. 432 с.
18. Bergada J. M., Watton J., Ebrahimi A. A complete analysis of axial piston pump leakage and lubricating interfaces. Applied Mathematical Modelling. 2012. Т. 36, вип. 11. С. 5498–5513. URL: https://doi.org/10.1016/j.apm.2011.12.032.
19. Shorbagy A., Ivantysyn R., Weber J. Holistic analysis of the tribological interfaces of an axial piston pump – focusing on the pump’s efficiency. Chemical Engineering & Technology. 2023. Т. 46, вип. 1. С. 1–9. URL: https://doi.org/10.1002/ceat.202200450.
20. Косолапов В. Б., Литовка С. В. Определение зазора в сопряжении «поршень–втулка» аксиально-поршневого насоса гидропривода мобильных машин с учетом толщины смазочной пленки рабочей жидкости. Интерстроймех – 2010 : материалы междунар. Науч.-техн. Конф. Белгород, 2010. Т. 1. С. 213–219.
21. Косолапов В. Б., Литовка С. В. Влияние параметров смазочной пленки рабочей жидкости на ресурс гидропривода мобильных машин. Вісник Харківського національного технічного університету сільського господарства імені Петра Василенка. Т. 128 : Серія «Проблеми надійності машин та засобів механізації сільськогосподарського виробництва. С. 256–260.
22. Yin W., Yu Y., Zhao Y. Volumetric efficiency degradation prediction of axial piston pump based on friction and wear test. Processes. 2024. Т. 12, вип. 3. (Article 424). URL: https://doi.org/10.3390/pr12030424.
23. Лысиков Е. Н., Косолапов В. Б., Воронин С. В. Надмолекулярные структуры жидких смазочных сред и их влияние на износ технических систем : монография : монография. Харьков : ЭДЭНА, 2009. 274 с.
24. Totten G. E. G. E. Handbook of lubrication and tribology. Boca Raton : CRC Press, 2006. Т. 1 : Application and maintenance. 213 с.
25. Minfray C., Martin J.-M., Esnouf C. A multi-technique approach of tribofilm characterisation. Thin Solid Films. 2008. Т. 516, вип. 12. С. 4106–4112.
26. Косолапов В. Б., Литовка С. В. Экспериментальные исследования толщины смазочной пленки рабочей жидкости гидропривода в процессе эксплуатации мобильных машин. Интерстроймех – 2010 : материалы междунар. Науч.-техн. Конф. Белгород, 2010. Т. 1. С. 209–212.
27. Maruyama T., et al. In situ quantification of oil film formation and breakdown using electrical impedance. Tribology Transactions. 2018. Т. 61, вип. 6. С. 1051–1061. URL: https://doi.org/10.1080/10402004.2018.1468519.
28. Косолапов В. Б., Літовка С. В. Оцінка впливу частоти заміни рідини гідроприводу трансмісії на техніко-економічні показники сільськогосподарських машин. Вісник Харківського національного технічного університету сільського господарства імені Петра Василенка. 2010. Т. 2, вип. 95. С. 225–229.
29. Caterpillar Inc. 320 Hydraulic Excavator. Technical specifications. Hydraulic system – maximum flow 429 L/min; maximum pressure 35 000 kPa. Caterpillar Inc. URL: https://www.cat.com/en_MX/products/new/equipment/excavators/medium-excavators/126534.html.
30. Caterpillar Inc. 320 Hydraulic Excavator. Product brochure and specifications. Bucket capacities and working ranges. Caterpillar Inc. URL: https://www.foleyinc.com/wp-content/uploads/2025/02/320-gc-next-gen-brochure.pdf.