Examination of the load-bearing state of the car load-bearing structure when the cargo is frozen in it

Authors

  • O.V. Fomin State University of Infrastructure and Technology, Kiev, Ukraіna
  • А.О. Lovska Ukrainian State University of Railway Transport
  • S.S. Sova Volodymyr Dahl East Ukrainian National University
  • A.S. Lytvynenko Volodymyr Dahl East Ukrainian National University

DOI:

https://doi.org/10.33216/1998-7927-2022-271-1-53-57

Keywords:

transport mechanics, wagon, load-bearing structure, strength, body load, temperature impact

Abstract

This article presents the results of the examination of the load-bearing state of the nonversatile wagon load-bearing structure when the cargo is unfrozen in it.

In order to determine the temperature influence on the load-bearing structure of the wagon, we carried out calculations by the method of linked elements, which is implemented in the SolidWorks Simulation (CosmosWorks) program complex. For this purpose, a spacious model of the load-bearing structure of the wagon was created in the SolidWorks software package. During the construction of the spacious model of the car load-bearing structure the elements of the structure that tightly interact with each other are taken into account, i.e. the model does not include the cranks of the loading hatches, since they interact with the load-bearing structure in a hinged manner.

During the calculations it was taken into account that the car is loaded with stone coal. The material of the load-bearing structure of the wagon is 09G2S steel. When constructing the structural-element model of the wagon load-carrying structure, spacious and exoparametric tetrahedrons were used. The optimum number of connected elements was determined by graphoanalytic method.

The results of the calculations showed that the maximum equivalent loads in the load-bearing structure of the wagon are within the permissible limits at the temperature of freezing of the cargo up to 91°C. The maximum equivalent loads in this case are recorded in the area of interaction of the lower shell with the cladding and amount to 343.8 MPa. The maximum displacements in the load-bearing structure of the car are 3.6 mm and occur in the middle part of the frame. The work also includes the results of the identification of the most stressed zones of the load-bearing structure of the wagon when the cargo is frozen in it.

In order to ensure the preservation of load-bearing structures of open wagons during freezing of vans in them it is necessary to maintain a safe temperature regime or the introduction of thermal-strength components in their load-bearing structures.

The results of the conducted research will contribute to the creation of guidelines for the design of modern designs of freight cars with improved technical and economic indicators.

References

1. Парунакян В. Э.Методика определения продолжительности разогрева грузов в конвективных гаражах размораживания / Парунакян В. Э., Дженчако В. Г. // Вісник Приазовського державного технічного університету. – 2004. – Вип. 14. – С. 319 – 322.

2. Парунакян В. Э. Определение продолжительности разогрева груза в вагонах на основе меода планирования эксперимента / Парунакян В. Э., Дженчако В. Г. // Вісник Приазовського державного технічного університету. – 2006. – Вип. 16. – С. 233 – 239.

3. Беляев Н. Н. Численный расчет процесса размораживания груза в полувагоне / Беляев Н. Н., Карпо А. А. // Строительство. Материаловедение. Машиностроение. Серия: Безопасность жизнедеятельности. – 2015. – Вып. 83. – С. 29 – 33.

4. Antipin D.Ya. Justification of a Rational Design of the Pivot Center of the Open-top Wagon Frame by means of Computer Simulation / Antipin D.Ya., Racin D.Yu., Shorokhov S.G. // Procedia Engineering. – 2016. – Vol. 150. – P. 150 – 154.

5. Harak S. S. Structural Dynamic Analysis of Freight Railway Wagon Using Finite Element Method / Harak S. S., Sharma S. C., Harsha S. P. // Procedia Materials Science. – 2014. – Vol. 6. – P. 1891 – 1898.

6. Hyun-Ah Lee. Structural-optimization-based design process for the body of a railway vehicle made from extruded aluminum panels / Hyun-Ah Lee, Seong-Beom Jung, Hwan-Hak Jang, Dae-Hwan Shin, Jang Uk Lee, Kwang Woo Kim, Gyung-Jin Park // Journal of Rail and rapid transit. – 2016. – No. 11.

7. Fomin O. Research into the Strength of an OpenWagon with Double Sidewalls Filled with Aluminium Foam / Fomin O., Gerlici J., Gorbunov M., Vatulia G., Lovska A., Kravchenko K. // Materials. – 2021. – Vol. 14 (12). 3420. doi: https://doi.org/10.3390/ma14123420

8. Fomin O. Dynamics and strength of circular tube open wagons with aluminum foam filled center sills / Fomin O., Gorbunov M., Lovska A., Gerlici J., Kravchenko K. // Materials. – 2021. – Vol. 14(8). 1915. https://doi.org/10.3390/ma14081915

9. Конструирование и расчет вагонов / Лукин В. В., Шадур Л. А., Котуранов В. И., Хохлов А. А., Анисимов П. С. – М.: УМК МПС России, 2000. – 731 с.

10. O. Fomin. Determining the dynamic loading on an open-top wagon with a two-pipe girder beam / O. Fomin, A. Lovska, O. Daki, V. Bohomia, O. Tymoshchuk, V. Tkachenko // Eastern-European Journal of Enterprise Technologies. – 2019. – № 3/7 (99) – P. 18 – 25. doi: https://doi.org/10.15587/1729-4061.2019.166329

11. Alyona Lovska. Dynamic load modelling within combined transport trains during transportation on a railway ferry / Alyona Lovska, Oleksij Fomin, Vaclav Pistek, Pavel Kucera // Applied Sciences. – 2020. – Vol. 10(16). 5710. doi:10.3390/app10165710

12. Lovska A. Calculation of Loads on Carrying Structures of Articulated Circular-Tube Wagons Equipped with New Draft Gear Concepts / Lovska A., Fomin O., Kučera P., Píštěk V. // Appl. Sci. – 2020. – Vol. 10(7441). doi:10.3390/app10217441.

13. Vatulia G.Optimization of the truss beam. Verification of the calculation results / Vatulia G., Komagorova S., Pavliuchenkov M. // MATEC Web of Conferences. – 2018. – Vol. 230. 02037. doi: 10.1051/matecconf/201823002037

14. Vatulia G. Regression equations for circular CFST columns carrying capacity evaluation / Vatulia G., Rezunenko M., Orel Y., Petrenko D. // MATEC Web of Conferences. – 2017. – Vol. 107. 00051.

15. ДСТУ 7598:2014. Вагони вантажні. Загальні вимоги до розрахунків та проектування нових і модернізованих вагонів колії 1520 мм (несамохідних). [Чинний від 2015-07-01]. Київ, 2015. 250 с.

16. ГОСТ 33211-2014. Вагоны грузовые. Требования к прочности и динамическим качествам. [Действителенот 2016-07-01]. Москва, 2016. 54 с.

Published

2022-02-08